ON FINITE-TIME STABILITY AND STABILIZATION FOR SWITCHED DISCRETE LINEAR SYSTEMS

Weiming Xiang, Jian Xiao, and Chengyong Xiao

References

  1. [1] H. Ye, A.N. Michel, & L. Hou, Stability theory for hybriddynamic systems, IEEE Transactions on Automatic Control,43(4), 1998, 461–474.
  2. [2] L. Weiss & E. Infante, Finite time stability under perturbingforces and on product spaces, IEEE Transactions on AutomaticControl, 12(1), 1967, 54–59.
  3. [3] A.N. Michel & S.H. Wu, Stability of discrete systems over afinite interval of time, International Journal of Control, 9(6),1969, 679–693.
  4. [4] H. D’Angelo, Linear time-varying systems: analysis and syn-thesis (Boston, MA: Allyn and Bacon, 1970).
  5. [5] F. Amato, M. Ariola, & C. Cosentino, Finite-time stabilizationvia dynamic output feedback, Automatica, 41(2), 2006, 337–342.
  6. [6] F. Amato & M. Ariola, Finite-time control of discrete-timelinear systems, IEEE Transactions on Automatic Control,50(5), 2005, 724–729.
  7. [7] H. Ichihara & H. Katayama, Finite-time control of discrete-time linear systems with input constraints, Proceedings of theAmerican Control Conference, 2009, 1171–1176.
  8. [8] B. Castillo-Toledo, S.D. Gennaro, A.G. Loukianov, & J. Rivera,Hybrid control of induction motors via sampled closed represen-tations, IEEE Transactions on Industrial Electronics, 55(10),2008, 3758–3771.
  9. [9] C. Sreekumar & V. Agarwal, A hybrid control algorithm forvoltage regulation in DC–DC boost converter, IEEE Transac-tions on Industrial Electronics, 55(6), 2008, 2530–2538.
  10. [10] A. Balluchi, M.D. Benedetto, C. Pinello, C. Rossi, & A.Sangiovanni-Vincentelli, Cut-off in engine control: a hybridsystem approach, Proc. 36th IEEE Conf. on Decision andControl, 1997, 4720–4725.
  11. [11] B.E. Bishop & M.W. Spong, Control of redundant manipulatorsusing logic-based switching, Proc. 36th IEEE Conf. on Decisionand Control, 1998, 16–18.
  12. [12] W. Zhang, M.S. Branicky, & S.M. Phillips, Stability of net-worked control systems, IEEE Control Systems Magazine,21(1), 2001, 84–99.
  13. [13] K.S. Narendra & J.A. Balakrishnan, Common Lyapunov func-tion for stable LTI systems with commuting A-matrices, IEEETransactions on Automatic Control, 39(12), 1994, 2469–2471.
  14. [14] M.S. Branicky, Multiple Lyapunov functions and other analysistools for switched and hybrid systems, IEEE Transactions onAutomatic Control, 43(4), 1998, 475–482.
  15. [15] Z.R. Xiang & W.M. Xiang, Observer design for a class ofswitched nonlinear systems, Control and Intelligent Systems,36(4), 2008, 318–322.
  16. [16] A.S. Morse, Supervisory control of families of linear set-pointcontrollers, part 1: exact matching, IEEE Transactions onAutomatic Control, 41, 1996, 1413–1431.
  17. [17] J.P. Hespanha, D. Liberzon, & A.S. Morse, Stability of switchedsystems with average dwell time, Proc. 38th Conf. on Decisionand Control, 1999, 2655–2660.
  18. [18] G.S. Zhai, B. Hu, K. Yasuda, & A.N. Michel, Stability analysisof switched systems with stable and unstable subsystems: anaverage dwell time approach, Proc. of the American ControlConference, Chicago, 2000, 200–204.
  19. [19] H. Lin & P.J. Antsaklis, Stability and stabilizability of switchedlinear systems: a survey of recent results, IEEE Transactionson Automatic Control, 54(2), 2009, 308–322.
  20. [20] D.J. Leith, R.N. Shorten, W.E. Leithead, O. Mason, & P.Curran, Issues in the design of switched linear control systems:a benchmark study, International Journal of Adaptive Controland Signal Processing, 17, 2003, 103–118.
  21. [21] S. Lang, Linear algebra, Third Edition (London, UK: Springer-Verlag, 1987).
  22. [22] J. Daafouz, P. Riedinger, & C. Iung, Stability analysis andcontrol synthesis for switched systems: a switched Lyapunovfunction approach, IEEE Transactions on Automatic Control,47(11), 2002, 1883–1887.

Important Links:

Go Back