INPUT-OUTPUT TRANSITION MODELS FOR DISCRETE-TIME SWITCHED LINEAR AND NONLINEAR SYSTEMS

Chow Y. Lai, Cheng Xiang, and Tong H. Lee

References

  1. [1] A.S. Morse, Supervisory control of families of linear set-pointcontrollers – Part I: Exact matching, IEEE Transactions onAutomatic Control, 41(10), 1996, 1413–1431.
  2. [2] K.S. Narendra & J. Balakrishnan, Adaptive control using mul-tiple models and switching, IEEE Transactions on AutomaticControl, 42(2), 1997, 171–187.
  3. [3] D. Liberzon, J.P. Hespanha, & A.S. Morse, Stability of switchedlinear systems: A Lie-algebraic condition, Systems and ControlLetter, 37(3), 1999, 117–122.
  4. [4] K.S. Narendra & C. Xiang, Adaptive control of discrete-time systems using multiple models, IEEE Transactions onAutomatic Control, 45(9), 2000, 1669–1686.
  5. [5] R.N. Shorten & K.S. Narendra, Necessary and sufficient condi-tions for the existence of a CQLF for a finite number of stableLTI systems, International Journal of Adaptive Control andSignal Processing, 16(10), 2002, 709–728.57
  6. [6] M. Margaliot, Stability analysis of switched systems usingvariational principles: An introduction, Automatica, 42(12),2006, 2059–2077.
  7. [7] Y. Cao & C.W. Silva, Supervised switching control of a de-ployable manipulator system, Control and Intelligent Systems,34(2), 2006, 153–165.
  8. [8] T. Zou, X. Wang, S.Y. Li, & Q.M. Zhu, A mixed logic enhancedmulti-model switching predictive controller for nonlinear dy-namical process, Control and Intelligent Systems, 35(2), 2007,154–161.
  9. [9] H. Lin & P.J. Antsaklis, Switching stabilizability for continuous-time uncertain switched linear systems, IEEE Transactions onAutomatic Control, 45(4), 2007, 633–646.
  10. [10] Z.R. Xiang & W.M. Xiang, Observer design for a class ofswitched nonlinear systems, Control and Intelligent Systems,36(4), 2008, 318–322.
  11. [11] F. M’Sahli, C. Fayeche, & R.B. Abdennour, Multiple modeland multiple control approaches: Application to a semi-batchreactor, Control and Intelligent Systems, 37(4), 2009, 195–203.
  12. [12] Z. Sun, Stabilizing switching design for switched linear systems:A state-feedback pathwise switching approach, Automatica,45(7), 2009, 1708–1714.
  13. [13] W. Zhang & L. Yu, Stability analysis for discrete-time switchedtime-delay system, Automatica, 45(10), 2009, 2265–2271.
  14. [14] W. Zhang, A. Abate, J. Hu, & M.P. Vitus, Exponential sta-bilization of discrete-time switched linear system, Automatica,45(11), 2009, 2526–2536.
  15. [15] D. Liberzon & A.S. Morse, Basic problems in stability anddesign of switched systems, IEEE Control Systems Magazine,19(5), 1999, 59–70.
  16. [16] H. Lin & P.J. Antsaklis, Stability and stabilizability of switchedlinear systems: A survey of recent results, Proc. IEEE Inter-national Symposium on Intelligent Control, 2005, 24–29.
  17. [17] A.V. Savkin & R.J. Evans, Hybrid dynamical systems: Con-troller and sensor switching problems (Boston: Birkh¨auser,2002).
  18. [18] D. Liberzon, Switching in systems and control (Boston:Birkh¨auser, 2003).
  19. [19] S. Sun & S.S. Ge, Switched linear systems: Control and design(London, UK: Springer-Verlag, 2005).
  20. [20] J. Kohlmorgen, S. Lemm, K.R. M¨uller, S. Liehr, & K. Pawelzik,Fast change point detection in switching dynamics using ahidden Markov model of prediction experts, Proc. InternationalConference on Artificial Neural Networks, 1999, 204–209.
  21. [21] M.J. Feiler & K.S. Narendra, Simultaneous identification andcontrol of time-varying systems, Proc. 45th IEEE Conferenceon Decision and Control, San Diego, CA, USA, 2006, 1093–1098.
  22. [22] E.W. Kamen, Fundamentals of linear time-varying systems, inW.S. Levine (Ed.), The control handbook (Boca Raton, FL:CRC Press and IEEE Press, 1996), 451–468.
  23. [23] E.W. Kamen, P.P. Khargonekar, & K.R. Poolla, A transfer-function approach to linear time-varying discrete-time systems,SIAM Journal on Control and Optimization, 23(4), 1985,550–565.
  24. [24] A.U. Levin & K.S. Narendra, Control of nonlinear dynamicalsystems using neural networks – Part II: Observability, identi-fication and control, IEEE Transactions on Neural Networks,7(1), 1999, 30–42.
  25. [25] C. Xiang, Existence of global input-output model for nonlinearsystems, Proc. 2005 International Conference on Control andAutomation, Budapest, Hungary, 2005, 125–130.
  26. [26] M. Haruno, D.M. Wolpert, & M. Kawato, MOSAIC model forsensorimotor learning and control, Neural Computation, 13,2001, 2201–2220.
  27. [27] G. Ferrari-Trecate, M. Muselli, D. Liberati, & M. Morari, Aclustering technique for the identification of piecewise affinesystems, Automatica, 39, 2003, 205–217.
  28. [28] J. Roll, A. Bemporad, & L. Ljung, Identification of piecewiseaffine systems via mixed-integer programming, Automatica,40, 2004, 37–50.
  29. [29] A.L. Juloski, S. Weiland, & W.P.M.H. Heemels, A bayesian ap-proach to identification of hybrid systems, IEEE Transactionson Automatic Control, 50(10), 2005, 1520–1533.
  30. [30] S. Paoletti, A.L. Juloski, G.F. Tracate, & R. Vidal, Identi-fication of hybrid systems: A tutorial, European Journal ofControl, 513(2–3), 2007, 242–260.
  31. [31] R. Vidal, Recursive identification of switched ARX systems,Automatica, 44(9), 2008, 2274–2287.
  32. [32] C. Xiang, C.Y. Lai, T.H. Lee, & K.S. Narendra, A generalframework for least-squares based identification of time-varyingsystem using multiple models, Proc. 7th International Confer-ence on Control and Automation, Christchurch, New Zealand,2009, 212–219.
  33. [33] C.Y. Lai, C. Xiang, & T.H. Lee, Identification of piecewiseaffine systems and nonlinear systems using multiple models,Proc. 8th International Conference on Control and Automation,Xiamen, China, 2010, 2005–2012.

Important Links:

Go Back