COMPUTER-BASED NODULE MALIGNANCY RISK ASSESSMENT IN THYROID ULTRASOUND IMAGES

Ioannis Legakis, Michalis A. Savelonas, Dimitris Maroulis, and Dimitris K. Iakovidis

References

  1. [1] S. Feld, Thyroid nodule task force, AACE Clinical practice guidelines for the diagnosis and management of thyroid nodules, Endocrine Practice, 1996, 78–84.
  2. [2] E. Marquee, C.B. Benson, M.C. Frates, P.M. Doubilet, P.R. Larsen, E.S. Cibas, & S.J. Mandel, Usefulness of ultrasonography in the management of nodular thyroid disease, Annals of Internal Medicine, 133, 2000, 696–700.
  3. [3] E. Papini, R. Guglielmi, A. Bianchini, A. Crescenzi, S. Taccogna, F. Nardi, C. Panunzi, R. Rinaldi, V. Toscano, & C.M. Pacella, Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-doppler features, The Journal of Clinical Endocrinology Metabolism, 87 (5), 2002, 1941–1946.
  4. [4] D. Smutek, R. Sara, P. Sucharda, T. Tjahjadi, & M. Svec, Image texture analysis of sonograms in chronic inflammations of thyroid gland, Ultrasound in Medicine and Biology, 29 (11), 2003, 1531–1543.
  5. [5] E.K. Tomimori, R.Y. Camargo, H. Bisi, & G. MedeirosNeto, Combined ultrasonographic and cytological studies in the diagnosis of thyroid nodules, Biochimie, 81 (5), 1999, 447–452.
  6. [6] D.E. Maroulis, M.A. Savelonas, D.K. Iakovidis, S.A. Karkanis, & N. Dimitropoulos, Variable background active contour model for computer-aided delineation of nodules in thyroid ultrasound images, IEEE Transactions on Information Technology in Biomedicine, 11 (5), 2007, 537–543.
  7. [7] S. Tsantis, N. Dimitropoulos, D. Cavouras, & G. Nikiforidis, A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images, Computer Methods and Programs in Biomedicine, 84, 2006, 86–98.
  8. [8] M.A. Savelonas, D.K. Iakovidis, N. Dimitropoulos, & D. Maroulis, Computational characterization of thyroid tissue in the Radon domain, Proc. IEEE Int. Symp. Comp.-Bas. Med. Syst. (CBMS), Maribor, Slovenia, 2007, 189–192.
  9. [9] S. Tsantis, D. Cavouras, I. Kalatzis, N. Piliouras, N. Dimitropoulos, & G. Nikiforidis, Development of a support vector machine-based image analysis system for assessing the thyroid nodule malignancy risk on ultrasound, Ultrasound in Medicine and Biology, 31 (11), 2005, 1451–1459.
  10. [10] C. Skouroliakou, M. Lyra, A. Antoniou, & L. Vlahos, Quantitative image analysis in sonograms of the thyroid gland, Nuclear Instruments and Methods in Physics Research, 569, 2006, 606–609.
  11. [11] C.M. Rumack, S.R. Wilson, J.W. Charboneau, & J.-A. Johnson, Diagnostic Ultrasound (Philadephia: Mosby, 2004).
  12. [12] E. Keramidas, D.K. Iakovidis, D. Maroulis, & S.A. Karkanis, Efficient and effective ultrasound image analysis scheme for thyroid nodule detection, Lecture Notes on Computer Science, 4633, 2007, 1052–1060.
  13. [13] T. Ojala, M. Pietikainen, & D.A. Harwood, A comparative study of texture measures with classification based on feature distributions, Pattern Recognition, 29, 1996, 51–59.
  14. [14] O. Pujol & P. Radeva, Supervised Texture Classification for Intravascular Tissue Characterization. Handbook of Biomedical Image Analysis, Segmentation Models part B, 2, (Springer, 2005).
  15. [15] S. Theodoridis & K. Koutroumbas, Pattern Recognition, Third Edition (Academic Press, 2006).
  16. [16] T.F. Chan & L.A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 7, 2001, 266–277.
  17. [17] C.M. Chen, H.H.S. Lu, & A.T. Hsiao, A dual-snake model of high penetrability for ultrasound image boundary extraction, Ultrasound in Medicine of Biology, 27 (12), 2001, 1651–1665.
  18. [18] M.A. Savelonas, D.K. Iakovidis, D.E. Maroulis, & S.A. Karkanis, An active contour model guided by LBP distributions, Lecture Notes on Computer Science, 4179, 2006, 197–207. 34
  19. [19] P. Toft, The Radon transform, theory and implementation, PhD Thesis. Technical University of Denmark, 1996.
  20. [20] R.C. Gonzales & R.E. Woods, Digital image processing, Third Edition (Prentice Hall, 2008).
  21. [21] K. Nakamura, H. Yoshida, R. Engelmann, H. MacMahon, S. Katsuragawa, T. Ishida, K. Ashizawa, & K. Doi, Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks, Radiology, 14 (3), 2000, 823–830.
  22. [22] M. Kallergi, Computer-aided diagnosis of mammographic microcalcification clusters, Medical Physics, 31 (2), 2004, 314–326.
  23. [23] R.M. Rangayyan & T.M. Nguyen, Fractal analysis of contours of breast masses in mammograms, Journal of Digital Imaging, 20 (3), 2007, 223–237.
  24. [24] Y. Tao, E.C.M. Lam, & Y. Tang, Feature extraction using wavelet and fractal, Pattern Recognition Letters, 22 (3), 2001, 271–287.
  25. [25] T.F.B. Scholkopf, Support vector learning (Springer-Verlag, 1997).
  26. [26] A.P. Brandley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, 30 (7), 1997, 1145–1159.
  27. [27] G.M. Weiss & F. Provost, The effect of class distribution on classifier learning, Technical Report, ML-TR-43, Department of Computer Science, Rutgers University, New Jersey, 2001.
  28. [28] M.R. Kaus, S.K. Warfield, A. Nabavi, E. Chatzidakis, P.M. Black, F.A. Jolesz, & R. Kikinis, Segmentation of meningiomas and low grade gliomas in MRI, Proc. Int. Conf. Med. Im. Comp. Assist. Interv., 1999, 1–10.
  29. [29] H.H. Woltjer, The intraand inter-observer variability of impedance cardiography in patients at rest during exercise, Physiological Measurement, 17, 1996, 171–178.

Important Links:

Go Back