Jose N. Fidalgo


  1. [1] K.S. Narendra & K. Parthasarathy, Identification and control ofdynamical systems using neural networks, IEEE Transactionson Neural Networks, 1(1), 1990, 4–27.
  2. [2] K.S. Narendra & K. Parthasarathy, Gradient methods for theoptimization of dynamical systems containing neural networks,IEEE Transactions on Neural Networks, 2(1), 1991, 252–262.
  3. [3] T. Parisini & R. Zoppoli, Neural networks for feedback feedfor-ward nonlinear control systems, IEEE Transactions on NeuralNetworks, 5(3), 1994, 436–449.
  4. [4] E. Ronco & P.J. Gawthrop, Neural Networks for modeling andcontrol, Technical Report: csc97008, Centre for System andControl, Department of Mechanical Engineering, University ofGlasgow, 1997.
  5. [5] F. Nardi, Neural network based adaptive algorithms for non-linear control, Ph.D. Thesis, Georgia Institute of Technology,2000.
  6. [6] N. Hatziargyriou, G. Contaxis, M. Matos, J.A. PeGas Lopes,M.H. Vasconcelos, G. Kariniotakis, D. Mayer, J. Halliday,G. Dutton, P. Dokopoulos, A. Bakirtzis, J. Stefanakis, A.Gigantidou, P. O’Donnell, D. McCoy, M.J. Fernandes, J.M.S.Cotrim, & A.P. Figueira, Preliminary results from the moreadvanced control advice project for secure operation of isolatedpower systems with increased renewable energy penetrationand storage – more care, IEEE Power Tech, 4, Paper 317,Porto, Portugal, 2001.
  7. [7] J.N. Fidalgo, J.A. Pe¸cas Lopes, & V. Miranda, Neural networksapplied to preventive control measures for the dynamic securityof isolated power systems with renewables, IEEE Transactionson Power Systems, 11(4), 1996, 1811–1816.
  8. [8] J.A. Pe¸cas Lopes & M.H. Vasconcelos, On-line dynamic securityassessment based on Kernel Regression Trees, Proc. of IEEEPES Winter Meeting 2000, Singapore, 2000.
  9. [9] J.N. Fidalgo, J.A. Pe¸cas Lopes, V. Miranda, & L.B. Almeida,Fast assessment of transient stability margins by a neuralnetwork approach, Proc. 11th PSCC, Avignon, France, 1993.6
  10. [10] L.A. Wehenkel, Automatic learning techniques in power systems(Norwell, MA: Kluwer Academic Publishers, 1998).
  11. [11] J.N. Fidalgo, Feature subset selection based on ANN sensitivityanalysis – A practical study, in N. Mastorakis (Ed.), Advancesin neural networks and applications, Artificial IntelligenceSeries (Danvers, MA: World Scientific Engineering SocietyPress, 2001), 206–211.
  12. [12] D.E. Rumelheart et al., Learning internal representations byerror propagation, in D.E. Rumelhart & J.L. McClelland (Eds.),Parallel distributed processing, (Cambridge, MA, USA: MITPress, 1986), 318–362.
  13. [13] S. Haykin, Neural networks: A comprehensive foundation,Second Edition (Ontario Canada: Prentice-Hall, 1999).
  14. [14] C.M. Bishop, Neural networks for pattern recognition (GreatBritain: Oxford University Press, 1999).
  15. [15] F.M. Silva & L.B. Almeida, Acceleration techniques for thebackpropagation algorithm, in L.B. Almeida & C.J. Wellekens(Eds.), Neural Networks (Berlin, Germany: Springer-Verlag,1990), 110–119.
  16. [16] M.A. Pai, Power system stability – Analysis by the directmethod of Lyapunov (North-Holland Publishing Company,Amsterdam, 1981).
  17. [17] P. Kundur, Power system stability and control, Chapter 5 –Synchronous Machine Representation in Stability Studies, inN.J. Balu, M.G. Lauby (Ed.), (Electrical Power ResearchInstitute, McGraw-Hill Professional, Palo Alto, CA, 1994).

Important Links:

Go Back