POTENTIAL OF GAS SENSOR ARRAY BASED PRINCIPAL COMPONENT ANALYSIS HYBRID FOR ESCHERICHIA COLI DETECTION

Subadra Murugan and Marimuthu N. Sankaralingam

References

  1. [1] P. Hawkey & D. Lewis, Medical bacteriology practical approach(New York: Oxford University Press, 2005), 27–52.
  2. [2] S. Manzoorkadri, B. Gash, & A. Rukhsara, Antibiotic sen-sitivity and resistance profile of microorganisms responsiblefor UTI observed in Kashmir, India, Indian Journal for thePracticing Doctor, 1(1), 2004, 9–10.
  3. [3] K.A. Kuruvilla, S. Pillai, M. Jesudasan, & A. Kumar Jana,Bacterial profile of sepsis in a neonatal unit in South India,Indian Pediatrics, 35, 1998, 851–858.
  4. [4] K.C. Persaud & G.H. Dodd, Analysis of discrimination mech-anisms in mammalian system using a model nose, Nature, 299,1982, 352–355.
  5. [5] A.K. Srivastava, S.K. Srivastava, & K.K. Shukla, On the designissue of intelligent electronic nose system, Proceedings of IEEEinternational Conference on Industrial Technology, Goa, India,1, 2000, 243–248.
  6. [6] A.K. Pavlou, N. Magan, D. Sharp, J. Brown, H. Barr, &A.P.F. Turner, An intelligent rapid odour recognition modelin discrimination of Helicobacter pylori and other gastroe-sophageal isolates in vitro. Biosensors and Bioelectronics, 15,2000, 333–342.
  7. [7] A.D. Parry & B. Oppenheium, Leg ulcer odour detection iden-tifies B-haemolytic streptococcal infection, Journal of Wound-Care, 4, 1995, 404–406.
  8. [8] E.R. Thaler & C.W. Hanson, Use of an electronic nose predic-tion of a clinical pneumonia score: Biosensors and Microbes,Anesthesiology, 102, 2005, 63–68.
  9. [9] A.K. Pavlou, N. Magan, J.M. Jones, J. Brown, P. Klaster, &A.P. Turner, Detection of Mycobacterium tuberculosis (TB) invitro and in situ using an electronic nose in combination witha neural network system, Biosensors and Bioelectronics, 20,2004, 538–544.
  10. [10] P. Hay, A.A. Tummon, M. Ogunfile, A. Adebiyi, & A. Ade-fowora, Evaluation of a novel diagnostic test for bacterial vagi-nosis: ‘The electronic nose’, International Journal on STDAIDS, 14, 2003, 114–118.
  11. [11] R. Dutta, D. Morgan, N. Baker, J.W. Gardner, & E.L. Hines,Identification of Staphyloccocus aureus infections in hospitalenvironment: Electronic nose based approach, Sensors andActuators B, 109, 2005, 355–362.
  12. [12] A.K. Pavlou, N. Magan, C. McNulty, J. Jones, D. Sharp, J.Brown, & A.P. Turner, Use of an electronic nose system fordiagnoses of urinary tract infections, Biosensors and Bioelec-tronics, 17, 2002, 893–899.
  13. [13] C. Di Natale, A. Mantini, A. Macagnano, D. Antuzzi, R.Paolasse, & A. D’Amico, Electronic nose analysis of urinesamples containing blood, Physiological Measurements, 20,1999, 377–384.
  14. [14] W. Ping, T. Yi, X. Haibao, & S. Farong, A novel method fordiabetes diagnosis based on electronic nose, Biosensors andBioelectronics, 12, 1997, 1031–1036.
  15. [15] C. Di Natale, A. Macagnano, E. Martinelli, R. Paolesse, G.D’Arcangelo, C. Roscioni, A. Finazzi-Agro, & A. D’Amico,Lung cancer identification by the analysis of breath by meansof an array of non-selective gas sensors, Biosensors and Bio-electronics, 18, 2003, 1209–1218.450
  16. [16] E.I. Mohamed, R. Linder, G. Perrielloa, & A. DiLorenzo, Pre-dicting type 2 diabetes using an electronic nose-based artificialneural network analysis, Diabetes, Nutrition & Metabolism,15(4), 2002, 215–221.
  17. [17] M. Subadra, N.S. Marimuthu, R. Ravi, & G.S. Vijayakumar,Rapid detection of microorganism in sterile body fluids by elec-tronic nose system, Asian Journal of Information Technology,11, 2007, 1091–1097.
  18. [18] Manual of αFOX 3000 (Alpha MOS SA).
  19. [19] L.I. Smith, A tutorial on principal component analysis, 2002.
  20. [20] B.G. Kermani, S.S. Schiffman, & H.T. Nagle, Using neuralnetworks and genetic algorithms to enchance performance in anelectronic nose, IEEE Transactions on Biomedical engineering,46(4), 1999, 429–439.
  21. [21] C.B. Begg, Biases in the assessment of diagnostic tests statisticsin medicine, John Wiley & Sons, 6(4), 2006(online), 411–423.
  22. [22] S.Y. Kung, K.I. Diamantaras, & J.S. Taur, Adaptive principalcomponents extraction and applications, IEEE Transactionson Signal processing, 42(15), 1994, 1202–1217.
  23. [23] T.D. Sanger, An optimality principle for unsupervised leraning,in D.S. Touretzky (Ed.), Advances in neural informationsystems (San Mateo, California: Morgan Kaufmann, 1989).
  24. [24] http://www.nd.com
  25. [25] D. Mishra, A. Yadav, S. Ray, & P.K. Kalra, Levenberg–Marquardt learning algorithm for integrate-and-fire neuronmodel, Neural Information Processing – Letters and Reviews,9(2), 2005, 42–45.
  26. [26] R.M. Hristev, The ANN book (GNU Public Licence, 1998).
  27. [27] M. Subadra & N.S. Marimuthu, Early diagnosis of neonatalsepsis by gas sensors and improved pattern recognition sys-tem, 2008, 2nd International Conference on Biomedical in-formatics and Signal processing (ICBMSP’09), Madras, India(presented).
  28. [28] M. Subadra & N.S. Marimuthu, On comparision of variouspattern recognition techniques for identifying Escherichia Coliin clinical specimens, International Journal of Recent Trendsin Engineering, 1(3), 2009, 140–144.
  29. [29] S. Benedetti, S. Mannino, A.G. Sabatini, G. Leuigi, & G.L.Marcazzan, Electronic nose and neural network use for theclassification of honey, Apidologie, 35, 2004, 1–6.

Important Links:

Go Back