DELTA OPERATOR MODELLING AND CONTROL BY OPTIMAL FREQUENCY MATCHING USING GA

Narayan C. Sarcar, Prasanta Sarkar, and Manabendra Bhuyan

References

  1. [1] R.H. Middleton & G.C. Goodwin, Improved finite word length characteristics in digital control using delta operator, IEEE Transactions on Automatic Control, 31(11), 1986, 1015–1021.
  2. [2] R.H. Middleton & G.C. Goodwin, High-speed digital signal processing and control, Proceedings of the IEEE, 80(2), 1992, 240–258.
  3. [3] R.H. Middleton & G.C. Goodwin, Digital control and estimation: A unified approach (Englewood Cliffs, NJ: Prentice-Hall, 1990).
  4. [4] P. Young, A. Chotai, P. McKenna, & W. Tych, Proportional– integral–plus design for delta operator systems, part-I, siso, part II, mimo, International Journal of Control, 70, 1998, 123–167.
  5. [5] E.G.J. Collins & T. Son, A delta operator approach to discretetime H∝ control, International Journal of Control, 72(4), 1999, 315–320.
  6. [6] B. Lennartson, R. Middleton, A.K. Christiansson, & T. McKelvey, Low order sampled data H∞ control using the delta operator and LMIs, Proc. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, 2004, 4479–4484.
  7. [7] D. Janecki, Model reference adaptive control using the delta operator, IEEE Transactions on Automatic Control, 33(8), 1998, 771–775.
  8. [8] C.B. Soh, Robust stability of discrete-time systems using delta operators, IEEE Transactions on Automatic Control, 36(3), 1991, 377–380.
  9. [9] Q. Jiqing, Y. Hongjiu, X. Yuanqing, Z. Jinhui, & G. Zhifeng, Robust stabilization for a class of discrete-time systems with delays via delta operators approach, Proc. 26th Chinese Control Conference, Zhangjiajie, Hunan, 2007, 49–53.
  10. [10] P. Sarkar & J. Pal, A unified approach for controller reduction in delta domain, IETE Journal of Research, 50(5), 2004, 373–375.
  11. [11] P. Sarkar & J. Pal, Controller design in delta domain using generalized moment matching, AMSE Journal, 61(1), 2006, 43–62.
  12. [12] M.B. Lauritsen & M. Rostgaard, Delta-operator predictive control, Proc. of the 36th IEEE Conference on Decision and Control, San Diego, 1997, 884–889.
  13. [13] R.S. Erwin & D.S. Bernstein, Fixed-structure discrete-time H2-optimal controller synthesis using the delta operator, Proc. of the American Control Conference, Albuquerque, 1997, 3185– 3189.
  14. [14] R.S. Erwin & D.S. Bernstein, Fixed-structure discrete-time mixed H2/H∞ controller synthesis using the delta-operator, Proc. of the American Control Conference, Albuquerque, 1997, 3526–3530.
  15. [15] M. Tadjine, M. M’Saad, & L. Dugard, Discrete-time compensators with loop transfer recovery, IEEE Transactions on Automatic Control, 39(6), 1994, 1259–1262.
  16. [16] H.G. Li, X.D. Zhu, & P.S. Wang, Optimal control law of robot based on delta operator in visual servoing, Proc. 3rd International Conference on Machine Learning and Cybernetics, Shanghai, 2004, 533–537.
  17. [17] P. Suchomski, Robust PI and PID controller design in delta domain, Proc. IEE Control Theory and Applications, 148(5), 2001, 350–354.
  18. [18] K. Wu, Y. Fu, & L. Shuang, A delta-operator approach to robust stabilization for uncertain time-delay systems with jumping parameter, Proc. 6th World Congress on Intelligent Control and Automation, Dalian, 2006, 481–485.
  19. [19] W. Qing & M. Kemao, Robust stabilization and robust H∞ control of uncertain delta operator systems, Proc. 26th Chinese Control Conference, Zhangjiajie, Hunan, 2007, 26–31.
  20. [20] V. Kucera, Exact model matching, polynomial equation approach, International Journal of System Science, 12(12), 1981, 1477–1484.
  21. [21] J. Pal, Control system design using approximate model matching, System Science, 19(3), 1993, 5–23.
  22. [22] C.F. Chen & L.S. Shieh, An algebraic method for control system design, International Journal of Control, 11(5), 1970, 771–739.
  23. [23] Y.F. Chang, L.S. Shieh, & R.E. Yates, A dominant data matching method for digital control systems modelling and design, IEEE Transactions on Industrial Electronics Control and Instrumentation, 28(4), 1981, 390–396.
  24. [24] J. Shi & M.J. Gibbard, Discrete system models based on simple performance specifications in the time, frequency or complex z-domains, International Journal of Control, 42(2), 1985, 529–538.
  25. [25] J. Halawa, Comments on a new frequency domain technique for the simplification of linear dynamic systems and method 443 for frequency domain simplification of transfer functions, International Journal of Control, 41(1), 1985, 297–301.
  26. [26] S.K. Nagar, J. Pal, & J.D. Sharma, Digital controller design for system with transportation lag, International Journal of Systems Science, 23(12), 1992, 2385–2392.
  27. [27] P. Sarkar, Reduced order modelling and controller design in delta domain, Doctoral Dissertation, Indian Institute of Technology, Kharagpur, India, 2001.
  28. [28] D.E. Goldberg, Genetic algorithms in search, optimisation, and machine learning (Boston: Addison Wesley, 1989).
  29. [29] A. Varsek, T. Urbancic, & B. Filipic, Genetic algorithms in controller design and tuning, IEEE Transactions on Systems, Man and Cybernetics, 23(5), 1993, 1330–1339.
  30. [30] B. Porter & D.L. Hicks, Genetic tuning of digital PID controllers, Electronics Letters, 28(9), 1992, 843–844.
  31. [31] B. Porter & D.L. Hicks, Genetic design of unconstrained digital PID controllers, Proc. IEEE National Aerospace and Electronics Conference, Dayton, 1995, 478–485.
  32. [32] A.H. Jones, D. Moura, & P.B. Oliveira, Genetic auto tuning of PID controllers, Proc. 1st International Conference on Genetic Algorithms in Engineering Systems, Sheffield, 1995, 141–145.
  33. [33] S.M. Badran & H.N. Al-Duwaish, Optimal output feedback controller based on genetic algorithms, Electric Power Systems Research 50, 1999, 7–15.
  34. [34] Y.J. Cao & Q.H. Wu, Optimization of control parameters in genetic algorithms: A stochastic approach, International Journal of System Science, 30(2), 1999, 551–559.
  35. [35] H.N. Shankar, Adaptive control of general class of finite dimensional stable LTI systems, Ph.D. Thesis, Indian Institute of Science, India, 2000.
  36. [36] P.D. McMorran, Design of gas turbine controller using inverse Nyquist method, Proceedings of the IEE, 117(10), 1970, 2050– 2056.

Important Links:

Go Back