Narayan C. Sarcar, Prasanta Sarkar, and Manabendra Bhuyan
[1] R.H. Middleton & G.C. Goodwin, Improved finite word lengthcharacteristics in digital control using delta operator, IEEETransactions on Automatic Control, 31(11), 1986, 1015–1021. [2] R.H. Middleton & G.C. Goodwin, High-speed digital signalprocessing and control, Proceedings of the IEEE, 80(2), 1992,240–258. [3] R.H. Middleton & G.C. Goodwin, Digital control and estima-tion: A unified approach (Englewood Cliffs, NJ: Prentice-Hall,1990). [4] P. Young, A. Chotai, P. McKenna, & W. Tych, Proportional–integral–plus design for delta operator systems, part-I, siso,part II, mimo, International Journal of Control, 70, 1998,123–167. [5] E.G.J. Collins & T. Son, A delta operator approach to discrete-time H∝ control, International Journal of Control, 72(4), 1999,315–320. [6] B. Lennartson, R. Middleton, A.K. Christiansson, & T.McKelvey, Low order sampled data H∞ control using the deltaoperator and LMIs, Proc. 43rd IEEE Conference on Decisionand Control, Atlantis, Paradise Island, 2004, 4479–4484. [7] D. Janecki, Model reference adaptive control using the deltaoperator, IEEE Transactions on Automatic Control, 33(8),1998, 771–775. [8] C.B. Soh, Robust stability of discrete-time systems using deltaoperators, IEEE Transactions on Automatic Control, 36(3),1991, 377–380. [9] Q. Jiqing, Y. Hongjiu, X. Yuanqing, Z. Jinhui, & G. Zhifeng,Robust stabilization for a class of discrete-time systems withdelays via delta operators approach, Proc. 26th Chinese ControlConference, Zhangjiajie, Hunan, 2007, 49–53. [10] P. Sarkar & J. Pal, A unified approach for controller reductionin delta domain, IETE Journal of Research, 50(5), 2004,373–375. [11] P. Sarkar & J. Pal, Controller design in delta domain usinggeneralized moment matching, AMSE Journal, 61(1), 2006,43–62. [12] M.B. Lauritsen & M. Rostgaard, Delta-operator predictivecontrol, Proc. of the 36th IEEE Conference on Decision andControl, San Diego, 1997, 884–889. [13] R.S. Erwin & D.S. Bernstein, Fixed-structure discrete-timeH2-optimal controller synthesis using the delta operator, Proc.of the American Control Conference, Albuquerque, 1997, 3185–3189. [14] R.S. Erwin & D.S. Bernstein, Fixed-structure discrete-timemixed H2/H∞ controller synthesis using the delta-operator,Proc. of the American Control Conference, Albuquerque, 1997,3526–3530. [15] M. Tadjine, M. M’Saad, & L. Dugard, Discrete-time com-pensators with loop transfer recovery, IEEE Transactions onAutomatic Control, 39(6), 1994, 1259–1262. [16] H.G. Li, X.D. Zhu, & P.S. Wang, Optimal control law of robotbased on delta operator in visual servoing, Proc. 3rd Inter-national Conference on Machine Learning and Cybernetics,Shanghai, 2004, 533–537. [17] P. Suchomski, Robust PI and PID controller design in deltadomain, Proc. IEE Control Theory and Applications, 148(5),2001, 350–354. [18] K. Wu, Y. Fu, & L. Shuang, A delta-operator approachto robust stabilization for uncertain time-delay systems withjumping parameter, Proc. 6th World Congress on IntelligentControl and Automation, Dalian, 2006, 481–485. [19] W. Qing & M. Kemao, Robust stabilization and robust H∞control of uncertain delta operator systems, Proc. 26th ChineseControl Conference, Zhangjiajie, Hunan, 2007, 26–31. [20] V. Kucera, Exact model matching, polynomial equation ap-proach, International Journal of System Science, 12(12), 1981,1477–1484. [21] J. Pal, Control system design using approximate model match-ing, System Science, 19(3), 1993, 5–23. [22] C.F. Chen & L.S. Shieh, An algebraic method for controlsystem design, International Journal of Control, 11(5), 1970,771–739. [23] Y.F. Chang, L.S. Shieh, & R.E. Yates, A dominant datamatching method for digital control systems modelling anddesign, IEEE Transactions on Industrial Electronics Controland Instrumentation, 28(4), 1981, 390–396. [24] J. Shi & M.J. Gibbard, Discrete system models based onsimple performance specifications in the time, frequency orcomplex z-domains, International Journal of Control, 42(2),1985, 529–538. [25] J. Halawa, Comments on a new frequency domain techniquefor the simplification of linear dynamic systems and method443for frequency domain simplification of transfer functions, In-ternational Journal of Control, 41(1), 1985, 297–301. [26] S.K. Nagar, J. Pal, & J.D. Sharma, Digital controller designfor system with transportation lag, International Journal ofSystems Science, 23(12), 1992, 2385–2392. [27] P. Sarkar, Reduced order modelling and controller design in deltadomain, Doctoral Dissertation, Indian Institute of Technology,Kharagpur, India, 2001. [28] D.E. Goldberg, Genetic algorithms in search, optimisation,and machine learning (Boston: Addison Wesley, 1989). [29] A. Varsek, T. Urbancic, & B. Filipic, Genetic algorithms incontroller design and tuning, IEEE Transactions on Systems,Man and Cybernetics, 23(5), 1993, 1330–1339. [30] B. Porter & D.L. Hicks, Genetic tuning of digital PID con-trollers, Electronics Letters, 28(9), 1992, 843–844. [31] B. Porter & D.L. Hicks, Genetic design of unconstraineddigital PID controllers, Proc. IEEE National Aerospace andElectronics Conference, Dayton, 1995, 478–485. [32] A.H. Jones, D. Moura, & P.B. Oliveira, Genetic auto tuning ofPID controllers, Proc. 1st International Conference on GeneticAlgorithms in Engineering Systems, Sheffield, 1995, 141–145. [33] S.M. Badran & H.N. Al-Duwaish, Optimal output feedbackcontroller based on genetic algorithms, Electric Power SystemsResearch 50, 1999, 7–15. [34] Y.J. Cao & Q.H. Wu, Optimization of control parametersin genetic algorithms: A stochastic approach, InternationalJournal of System Science, 30(2), 1999, 551–559. [35] H.N. Shankar, Adaptive control of general class of finite di-mensional stable LTI systems, Ph.D. Thesis, Indian Instituteof Science, India, 2000. [36] P.D. McMorran, Design of gas turbine controller using inverseNyquist method, Proceedings of the IEE, 117(10), 1970, 2050–2056.
Important Links:
Go Back