MIMO INTELLIGENT CONTROLLER OPTIMIZATION FOR INDUSTRIAL PROCESS

Potti Subbaraj and Pon S. Godwin Anand

References

  1. [1] J.T. Gajjar, A.V.M. Rao, & J.F. Wolfinger, PC-based diagnostic tool for predictive maintenance of cement mill-equipment, Proc. Cement Industry Technical Conference, Schenectady, New York, 1989, 215–223.
  2. [2] M. Boulvin, A.V. Wouwer, R. Lepore, C. Renotte, & M. Remy, Modeling, simulation and evaluation of control loops for a cement grinding process, IEEE Transactions on ControlSystems Technology, 11(5), 2003, 715–725.
  3. [3] F. Jadot, G. Bastin, V. Wertz, & L. Magni, Global state feedback stabilisation of cement mills, Proc. 37th IEEE Conf. on Decision and Control, Tampa, FL, 1998, 3168–3170.
  4. [4] H. Cao, G. Si, Y. Zhang, X. Ma, & J. Wang, Load control of ball mill by a high precision sampling fuzzy logic controller with self-optimizing, Asian Journal of Control, 10(6), 2008, 621–631.
  5. [5] V. Van Breusegen, G.L.C. Bastin, V. Wertz, V. Werbrouck, & C. de Pierpont, An industrial application of multivariable linear quadratic control to a cement mill circuit, IEEE Transactions on Industry Application, 32(3), 1996, 670–677.
  6. [6] B. de Haas, V. Werbrouck, G. Bastin, & V. Wertz, Cement mill optimization: Design parameters selection of the LQG controller, Proc. 4th IEEE Conf. on Control Applications, Albany, NY, 1995, 862–867.
  7. [7] O.H. Dagci, M.O. Efe, & O. Kaynak, A nonlinear learning control approach for a cement milling process, Proc. IEEE Int. Conf. on Control Applications, Mexico City, 2001, 498–503.
  8. [8] A.V. Topalov & O. Kaynak, Neuro-adaptive modeling and control of a cement mill using a sliding mode learning mechanism, IEEE International Symposium on Industrial Electronics, 1, 2004, 225–230.
  9. [9] M. Benyakhlef & L. Radouane, Adaptive fuzzy control of a class of decentralized nonlinear systems and unknown dynamics, Control and Intelligent Systems, 35(1), 2007, 60–65.
  10. [10] F. Bouani, N. Mensia, & M. Ksouri, Fuzzy logic and genetic algorithms supervisors for internal model control strategy, Control and Intelligent Systems, 37(2), 2009, 78–86.
  11. [11] R. Sahasrabudhe, P. Sistu, G. Sardar, & R. Gopinath, Control and optimization in cement plants, IEEE Control Systems Magazine, 26(6), 2006, 56–63.
  12. [12] D.K. Dragan, S.B. Kuzmanovic, & E. Levi, Design of a PID like compound fuzzy logic controller, Engineering Applications of Artificial Intelligence, 14, 2001, 785–803.
  13. [13] Y. Shi, R. Eberhart, & Y. Chen, Implementation of evolutionary fuzzy systems, IEEE Transactions on Fuzzy Systems, 7(2), 1999, 109–119.
  14. [14] A. Visioli, Tuning of PID controllers with fuzzy logic, IEE Proceedings Control Theory Applications, 148(1), 2001, 1–8.
  15. [15] H.J. Cho, K.B. Cho, & B.H. Wong, Fuzzy-PID hybrid control: Automatic rule generation using genetic algorithms, Fuzzy Sets and Systems, 92(3), 1997, 305–316.
  16. [16] H.B. Gurocak, A genetic algorithm method for tuning fuzzy logic controllers, Fuzzy Sets and Systems, 108(1), 1999, 305– 316.
  17. [17] N. Chaiyaratana & A.M.S. Zalzala, Recent developments in evolutionary and genetic algorithms: Theory and applications, Proc. 2nd Int. Conf. Genetic Algorithms in Engineering Systems: Innovations and Applications, Glasgow, 1977, 270–277.
  18. [18] O. Cordon, R. Alcala, J. Alcala-Fdez, & I. Rojas, Guest editorial genetic fuzzy systems: What’s next? An introduction to the special section, IEEE Transactions on Fuzzy Systems, 15(4), 2007, 533–535.
  19. [19] A. Ramezani, H. Ramezani, & B. Moshiri, The Kalman filter information fusion for cement mill control based on local linear neuro-fuzzy model, Proc. 4th Int. Conf. Innovations in Information Technology, Dubai, 2007, 183–187.
  20. [20] F. Grognard, F. Jadot, L. Magni, G. Bastin, R. Sepulchre, & V. Wertz, Robust stabilization of a nonlinear cement mill model, IEEE Transactions on Automatic Control, 46(4), 2001, 618–623.
  21. [21] A.V. Topalov & O. Kaynak, Neural network modeling and control of cement mills using a variable structure systems theory based on-line learning mechanism, Journal of Process Control, 14(5), 2004, 581–589.
  22. [22] Kotini & G. Hassapis, A hybrid automaton model of the cement mill control, IEEE Transactions on Control Systems Technology, 16, 2008, 676–690.
  23. [23] D. Vrajitoru, P. Konnanur, & R. Mehler, Genetic algorithms for a single-track vehicle autonomous pilot, Control and Intelligent Systems, 36(1), 2008, 47–561.
  24. [24] P.C. Chen, C.W. Chen, & W.L. Chiang, GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems, Expert Systems with Applications, 36(3), 2009, 5872–5879.
  25. [25] B.L. Miller & D.E. Goldberg, Genetic algorithms, tournament selection and the effects of noise, Complex System, 9(3), 1995, 193–212.
  26. [26] R.J. Lian & B.F. Lin, Design of a mixed fuzzy controller for multiple-input multiple-output systems, Mechatronics, 15(10), 2005, 1225–1252.
  27. [27] A. Arslan & M. Kaya, Determination of fuzzy logic membership functions using genetic algorithms, Fuzzy Sets and Systems, 118(2), 2001, 297–306.
  28. [28] Y. Zhao & E.G. Collins, Fuzzy parallel parking control of autonomous ground vehicles in tights paces, Proc. of IEEE Int. Symposium on Intelligent Control, Houston, TX, 2003, 811–816.
  29. [29] Sk. Faruque Ali & A. Ramaswamy, Optimal fuzzy logic control for MDOF structural systems using evolutionary algorithms, Engineering Applications of Artificial Intelligence, 22(3), 2009, 407–419.
  30. [30] L. Magni, G. Bastin, & V. Wertz, Multivariable nonlinear predictive control of cement mills, IEEE Transaction on Control System Technology, 7(4), 1999, 361–371.

Important Links:

Go Back