COMPARISON OF CHEMICAL DESCRIPTORS FOR PROTEIN–CHEMICAL INTERACTION PREDICTION

J. Zhang and J. Huan

View Full Paper

References

  1. [1] A.R. Leach, Molecular modeling: Principles and applications(Englewood Cliffs, NJ: Prentice Hall, 2001).
  2. [2] N. Wale, I. Watson, & G. Karypis, Comparison of descrip-tor spaces for chemical compound retrieval and classification,Knowledge and Information Systems, 14(3), 2007, 1–29.
  3. [3] G. Paolini, R. Shapland, W. van Hoorn, J. Masonn, & A.Hopkins, Global mapping of pharmacological space, NatureBiotechnology 24, 2006, 805–815.
  4. [4] M. Deshpande, M. Kuramochi, N. Wale, & G. Karypis, Fre-quent substructure-based approaches for classifying chemicalcompounds, IEEE TKDE, 17(8), 2005, 1036–1050.
  5. [5] T. Horvath, T. Grtner, & S. Wrobel, Cyclic pattern kernelsfor predictive graph mining, SIGKDD 2004, 158–167.
  6. [6] DRAGON User Manual, Milano, http://www.talete.mi.it/products/products.htm.
  7. [7] Daylight User Manual, Daylight Inc., http://www.daylight.com.
  8. [8] D. Rogers, R. Brown, & M. Hahn, Using extended-connectivityfingerprints with laplacian-modified bayesian analysis in high-throughput screening, Journal of Biomolecular Screening,10(7), 2005, 682–686.
  9. [9] J. Faulon, M. Collins, & R. Carr, The signature moleculardescriptor. 4. Canonizing molecules using extended valencesequences. Journal of Chemical Information and ComputerScience 44(2), 2004, 427–436.
  10. [10] J. Huan, W. Wang, & J. Prins, Efficient mining of frequentsubgraph in the presence of isomorphism, Proc. 3rd IEEE Int.Conf. on Data Mining (ICDM) 2003, 549–552.
  11. [11] M. Kuramochi & G. Karypis, An efficient algorithm for discov-ering frequent subgraphs, IEEE Transactions on Knowledgeand Data Engineering, 16(9), 2004, 1038–1051.
  12. [12] D. Agrafiotis, V. Lobanov, & F.R. Salemme, Combinatorialinformatics in the post-genomics era, Natural Reviews DrugDiscovery, 1, 2002, 337–346.
  13. [13] C. Lipinski & A. Hopkins, Navigating chemical space forbiology and medicine, Nature, 432, 2004, 855–861.
  14. [14] C.M. Dobson, Chemical space and biology, Nature, 432, 2004,824–828.
  15. [15] J. Ballesteros & K. Palczewski, G protein-coupled receptordrug discovery: Implications from the crystal structure ofrhodopsin, Current Opinion in Drug Discovery Development,4, 2001, 561–574.
  16. [16] J. Faulon, M. Misra, S. Martin, K. Sale, & R. Sapra, Genomescale enzyme-metabolite and drug-target interaction predic-tions using the signature molecular descriptor, Bioinformatics,24(2), 2008, 225–233.
  17. [17] J. Hert, P. Willett, D. Wilton, P. Acklin, K. Azzaoui, & E.Jacoby, A. Schuffenhauer, Comparison of topological descrip-tors for similarity-based virtual screening using multiple bioac-tive reference structures, Organic and Biomolecular Chemistry2(22), 2004 3256–3266.
  18. [18] P. Gedeck, B. Rohde, & C. Bartels, QSAR – how good is it inpractice? Comparison of descriptor sets on an unbiased crosssection of corporate data sets, Journal of Chemical Informationand Modeling, 46(5), 2006, 1924–1936.
  19. [19] V. Viswanadhan, A. Ghose, G. Revankar, & R. Robins, Atomicphysicochemical parameters for three-dimensional structuredirected quantitative structure-activity relationships, Journalof Chemical Information and Computer Science 29, 1989,163–172.
  20. [20] A. Smalter, J. Huan, & G. Lushington, Pattern diffusiongraph kernel for chemical compound classification from Lassoregression to feature vector, IWDMB08, 2008.
  21. [21] C. Burges, A tutorial on support vector machines for patternrecognition, Data Mining and Knowledge Discovery, 2, 1998,121–167.
  22. [22] C. Chang & C. Lin, LIBSVM: A library for support vectormachines, 2001. Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
  23. [23] F. Fontaine, M. Pastor, & I. Zamora, et al., Anchor-GRIND:Filling the gap between standard 3D QSAR and the GRid-INdependent descriptors. Journal of Medicinal Chemistry48(7), 2005, 2687–2694.
  24. [24] J. Sutherland, L. O’Brien, & D. Weaver, A comparison of meth-ods for modeling quantitative structure–activity Relationships,Journal of Medicinal Chemistry 47(22), 2004, 5541–5554.
  25. [25] T. Liu, Y. Lin, X. Wen, R. Jorrisen, & M. Gilson, BindingDB: Aweb-accessible database of experimentally determined protein-ligand binding affinities, Nucleic Acids Research, 35, 2007,D198–D201.20
  26. [26] X. Chen, Y. Lin, & M. Gilson, The binding database: Overviewand user’s guide. Biopolymers Nucleic Acid Science 61, 2002,127–141.
  27. [27] X. Chen, Y. Lin, M. Liu, & M. Gilson, The binding database:Data management and interface design, Bioinformatics, 18,2002, 130–139.
  28. [28] X. Chen, M. Liu, & M. Gilson, Binding DB: A web-accessiblemolecular recognition database, Journal Combinational Chem-istry High-Throughput Screen, 4, 2001, 719–725.

Important Links:

Go Back