APPLICATION OF ANN MODELLING TECHNIQUES IN BLAST FURNACE IRON MAKING

N. Rajesh, M.R. Khare, and S.K. Pabi

References

  1. [1] J.G. Peacey & W.G. Davenport, The iron blast furnace (Oxford: Pergamon Press, 1979).
  2. [2] C.M. Ufret & T.J. Williams, Mathematical model of the blast furnace process, in D.B. Spading, N.H. Afgan (Eds.), Heat and mass transfer in metallurgical systems, (Washington: Hemisphere Pub. Co., 1981).
  3. [3] H. Nagomi, M.S. Chu, & J. Yagi, Multi-dimensional transient mathematical simulator of blast furnace process based on multifluid and kinetic theories, Computers & Chemical Engineering, 29, 2005, 2438–2448.
  4. [4] S Amano, T. Takarabe, T. Nakamori, H. Oda, M. Taira, S. Watanabe, & T.O. Seki, Expert system for blast furnace operation at Kimitsu works, ISIJ International, 30, 1990, 105–110.
  5. [5] M. Waller & H. Saxen, Time-variant event-internal trends in predictive modelling – methods with applications to ladle-wise analysis of hot metal silicon content, Industrial and Engineering Chemistry Research, 42, 2003, 85–90.
  6. [6] S. Haykin, Neural networks: A comprehensive foundation (New Delhi: Pearson Education Inc., 1999).
  7. [7] H.K.D.H. Bhadeshia, Neural networks in materials science, ISIJ International, 39, 1999, 966–979.
  8. [8] Y. Chen, J. Ricketts, J. Hevezi, & H. Abramowitz, Expert system for blast furnace operation, Proc. 3rd International Conf. on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Charleston, SC, 1990, 569– 576.
  9. [9] J. Chen, A predictive system for blast furnaces by integrating a neural network with qualitative analysis, Engineering Applications of Artificial Intelligence, 14, 2001, 77–85.
  10. [10] V.R. Radhakrishnan & A.R. Mohamed, Neural networks for the identification and control blast furnace hot metal quality, Journal of Process Control, 10, 2000, 509–524.
  11. [11] F. Pettersson, N. Chakraborti, & H. Saxen, A genetic algorithms based multi-objective neural net applied to noisy blast furnace data, Applied Soft Computing, 7, 2007, 387–397.
  12. [12] H. Saxen & F. Pettersson, Non linear prediction of the hot metal silicon in the blast furnace, ISIJ International, 47, 2007, 1732–1737.
  13. [13] C.H. Gao, Z.M. Zhou, & J.M. Chen, Assessing the predictability for blast furnace system through nonlinear time series analysis, Industrial & Engineering Chemistry Research, 47, 2008, 3037– 3045.
  14. [14] M. Nikus & H. Saxen, Prediction of a blast furnace burden distribution variable, ISIJ International, 36, 1996, 1142–1150.
  15. [15] Y. Otsuka, M. Konishi, K. Hanaoka, & T. Maki, Forecasting heat levels in blast furnaces using neural network model, ISIJ International, 39, 1999, 1047–1052.
  16. [16] C. Touzet, N. Kieffer, & M.L. Goc, Artificial neural networks forecasting and monitoring scaffold and scaffolding phenomena in blast furnaces, Proc. IEEE International Conf. on Systems, Man and Cybernetics, Intelligent Systems for 21st Century, Vancouver, B.C, Canada, 1995, 3754–3759.

Important Links:

Go Back