Fazal-ur-Rehman and L. Khan
[1] R.W. Brockett, Asymptotic stability and feedback stabilization, in R.W. Brockett, R.S. Millman, & H.J. Sussman (Eds.) Differential geometric control theory (Birkhauser, Boston, USA, 1983), 181–191. [2] P. Lucibello & G. Oriolo, Robust stabilization via iterative state steering with application to chained-form systems, Automatica, 37 (1), 2001, 71–79. [3] I. Kolmanovsky & N.H. McClamroch, Developments in nonholonomic control problems, IEEE Control Systems Magazine, 15, 1995, 20–36. [4] F. Alonge F. D’Ippolito, & F. Raimondi, Trajectory tracking of underactuated underwater vehicles, Proc. 40th IEEE Conference on Decision and Control, Orlando, Florida, December, 2001. [5] A. Behal, D. Dawson, W. Dixon, & Y. Fang, Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics, IEEE Transactions on Automatic Control, 47 (3), 2002, 495–500. [6] L. Bushnell, D. Tilbury, & S.S. Sastry, Steering three input chained form non-holonomic systems using sinusoid: the fire truck example, European Control Conference, 1993, 1432–1437. [7] H. Krishnan, M. Reyhanoglu, & H. McClamroch, Attitude stabilization of rigid spacecraft using two control torques: anonlinear control approach based on the spacecraft attitude dynamics, Automatica, 30, 1994, 1023–1027. [8] A. Astolfi, Discontinuous control of the Brockett integrator, European Journal of Control, 4 (1), 1998, 49–63. [9] M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control, 43 (4), 1998, 475–482. [10] J.M. Godhavn & O. Egeland, A Lyapunov approach to exponential stabilization of non-holonomic systems in power form, IEEE Transactions on Automatic Control, 42 (7), 1997, 1028– 1032. [11] J. Guldner & V.I. Utkin, Stabilization of non-holonomic mobile robots using Lyapunov functions for navigation and sliding mode control (Orlando, Florida, USA, 1994), 2967–2972. [12] P. Morin & C. Samson, Control of nonlinear chained systems: from the Routh–Hurwitz stability criterion to time-varying exponential stabilizers, IEEE Transactions on Automatic Control, 45 (1) 2000, 141–146. [13] J. Wei & E. Norman, On global representations of the solutions of linear differential equations as a product of exponentials, Proc. American Mathematical Society, April 1964, 327–334. [14] G. Lafferriere & H. Sussman, A differential geometric approach to motion planning, in Z. Li & J.F. Canny (Eds.) Nonholonomic Motion Planning (Kluwer, Dordrecht, 1993), 235– 270. [15] R.M. Murray, Z. Li, & S.S. Sastry, A mathematical introduction to robotic manipulation (CRC Press, Boca Raton, FL, 1994). [16] J.B. Pomet, Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems and Control Letters, 18, 1992, 147–158.287 [17] M. Vendittelli & G. Oriolo, Stabilization of the general two trailer system, in Proc. 2000 IEEE Int. Conf. on Robot. Automat. San Francisco, CA, 2000, 1817–1823. [18] H. Ye, A.N. Michel, & L. Hou, Stability theory for hybrid dynamical systems, IEEE Transactions on Automatic Control, 43 (4) 1998, 461–474.
Important Links:
Go Back