CONTROL OF A SCARA ROBOT: PSO-PID APPROACH

M.T. Daş and L.C. Dülger

References

  1. [1] M.T. Da¸s, Motion control of a SCARA robot with a PLC unit,M.Sc.Thesis, Gaziantep University, Mechanical EngineeringDepartment, Gaziantep, 2003.
  2. [2] H.S. Ali, L.B. Badas, Y.B. Aubry, & M. Darouach, Hinfinitycontrol of a Scara robot using polytopic LPV approach, IEEETransactions on Industrial Electronics, 41(2), 1994, 173–181.
  3. [3] M. Belhocine, M. Hamerlain, & K. Bouyoucef, Robot controlusing a sliding mode, Proc. 12th IEEE International Symposiumon 1ntelligent Control, Turkey, 1997.
  4. [4] F. Lin & R.D. Brandt, An optimum control approach to robustcontrol of robot manipulators, IEEE Transactions on Roboticsand Automation, 14(1), 1998, 69–77.
  5. [5] S. He, E. Prempain, & Q.H. Wu, An improved particle swarmoptimizer for mechanical design optimization problems, Engi-neering Optimization, 36(5), 2004, 585–605.
  6. [6] Z.L. Gaing, A particle swarm optimization approach for opti-mum design of PID controller in AVR system, IEEE Transac-tions on Energy conversion, 19(2), 2004, 384–391.
  7. [7] Y. Liu, J. Zhang, & S. Wang, Optimization design based onPSO algorithm for PID controller, Proc. 5th World Congresson Intelligent Control and Automation, China, June 15–19,2004.
  8. [8] X. Wang, Y. Wang, H. Zhou, & X Huai, PSO-PID: A novelcontroller for AQM routers, Proc. IEEE/IFIP on Wireless andOptical Communication Networks, 2006.
  9. [9] C.C. Kao, C.W. Chuang, & R.F. Fung, The self tuningPID control in a slider-crank mechanism system by applyingparticle swarm optimization approach, Mechatronics, 16, 2006,513–522.
  10. [10] M. Nasri, H. Nezamadi-Pour, & M. Maghfoori, A PSO-basedoptimum design of PID controller for a linear brushless dcmotor, PWASET, 20, 2007, 211–215.
  11. [11] M.T. Da¸s & L.C. D¨ulger, Particle swarm optimization (PSO)algorithm: Control of a four bar mechanism, Proc. EU/ME2007, ‘Metaheuristics in Service Industry, Germany, 96–101.
  12. [12] J. Kennedy & R.Eberhart, Particle swarm optimization, Proc.IEEE Int. Conf. Neural Networks, 4, Australia, 1995, 1942–1948.
  13. [13] R.C. Eberhart & Y. Shi, Particle swarm optimization: Devel-opments, applications and resources, IEEE 2001, 81–86.
  14. [14] R.C. Eberhart & Y. Shi, Tracking and optimizing dynamicsystems with particle swarms, IEEE -2001, 94–100.
  15. [15] P. Cuminos & N. Munro, PID Controllers: Recent tuningmethods and design to specification, IEE Proceedings Control,an Theory, and Application, 149(1), 2002, 46–56.
  16. [16] G.K.I. Mann, B.G. Hu, & R.G. Gosine, ‘Time-domain baseddesign and analysis of new PID tuning rules’, IEE Proceedingsan Control, Theory and Application, 148(3), 2001, 251–261.
  17. [17] K.H. Ang, G.C.Y. Chong, & Y. Li, PID Control System Anal-ysis, Design and Technology, IEEE Transactions on ControlSystems Technology, 13(4), 2005, 559–576.
  18. [18] Y. Li, K.H. Ang, & G.C.Y. Chong, PID control system analysisand design, IEEE Control Systems Magazine, February 2006,32–41.
  19. [19] M.T. Da¸s & L.C. D¨ulger, Mathematical modeling, simulationand experimental verification of a SCARA robot, SimulationModeling Practice and Theory, 13, 2005, 257–271.
  20. [20] Wall I Serpent Manual, 1993.
  21. [21] I.C. Trelea, The particle swarm optimization algorithm: Con-vergence analysis and parameter selection, Information Pro-cessing Letters, 85, 2003, 317–325.
  22. [22] S. Skoczowski, S. Domek, & K.Pietrusewicz, Robust PID modelfollowing control, Control and Intelligent Systems, 34(3), 2006,1544–1550.
  23. [23] Z. Al Hamous, S.F. Faisal, & S. Al. Sharif, Application ofparticle swarm optimization algorithm for optimal reactivepower planning, Control and Intelligent Systems, 35(1), 2007,1642–1653.30

Important Links:

Go Back