NUMERICAL SOLUTION FOR ONE-DIMENSIONAL OPEN-CHANNEL TRANSIENT FLOW

A. Triki and E. Hadj-Taïeb

References

  1. [1] E.B. Wylie, V.L. Streeter, & L. Suo, Fluid transients in system (Englewood Cliffs, New Jersey: Prentice Hall, 1993).
  2. [2] E.B. Wylie & V.L. Streeter, Fluid transients, (Ann Arbor: FEB Press, 1983).
  3. [3] M.H. Chaudhry, Applied hydraulic transient (New York: Van Nostrand Reinhold Company, 1987).
  4. [4] J.M. Hervouet, Hydrodynamique des écoulements à surface libre modélisation numérique avec la méthode des éléments finis (Paris: Presse de l’école nationale des ponts et chaussées, 2003).
  5. [5] D.M. Causion, D.M. Ingram, C.G. Mingham, G. Yang, & R.V. Pearson, Calculation of shallow water flows using a Cartesian cut cell approach, Advances in Water Resources, 23, 2000, 545–562.
  6. [6] E.F. Toro, Shock capturing methods for free surface shallow flows (New York: John Wiley and Sons, 2000).
  7. [7] R.J. Fennem & M.H. Chaudhry, Simulation of 1-dimensional dam break flows, Journal of Hydraulic Research, 25 (1), 1987, 41–51.
  8. [8] E.F. Hicks & P.M. Steffler, Characteristics dissipative Galerkin scheme for open channel flow, Journal of Hydraulic Engineering, ASCE, 118 (4), 1998, 337–352.
  9. [9] T.C. Rebello, A.D. Delgado, & E.D.F. Nieto, Asymptotically balanced schemes for non-homogeneous hyperbolic systems: Application to the shallow water equations, C.R. Académies des Sciences Paris, Science Direct, I-338, 2004, 85–90.
  10. [10] P. Rao, Numerical modelling of open channel flows using a multiple grid ENO scheme, Applied Mathematics and Computation Science Direct, 161, 2005, 599–610.
  11. [11] M.H. Tseng, Verification of 1-D transcritical flow model in channels, Engineering Applied Research II, National Centre for High-Performance Computing Hsinchu, Taiwan, R.O.C, 23, 1999, 654–664.
  12. [12] D. Liang, R.A. Falconer, & B. Lin, Comparison between TVD-McCormack and ADI-type solvers of the shallow water equation, Advances in Water Resources, 26, 2006, 1833–1845.
  13. [13] P.D. Lax & B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Communication Pure Applied Mathematics, 17, 1966, 381–398.
  14. [14] M.B. Abbott, An introduction to the method of characteristics (New York: American Elsevier, 1966).
  15. [15] S. Stuckenbruck & D.C. Wiggert, Unsteady flow through flexible tubing with coupled axial wall motion, 5th Int. Conf. Pressure Surges, Hannover, F. R. Germany, 1986, 11–17.
  16. [16] E. Hadj-Taïeb & T. Lili, Validation of hyperbolic model for water hammer in deformable pipes, ASME Journal of Fluids Engineering, 122, 2000, 57–64.
  17. [17] A. Lerat & R. Peyret, Sur le choix des schémas aux différences du second ordre fournissant des profils de choc sans oscillations, C.R. Academy of Science Paris, 277, 1973, 363–366.
  18. [18] F. Scheid, Numerical analysis (New Delhi: Tata McGraw-Hill, 2004).

Important Links:

Go Back