A. Sleit, S. Al-Adaileh, N. Al-Omari, and H. Hurani
[1] G. Sheikholeslami, S. Chatterjee, & A. Zhang, Wavecluster:A multi-resolution clustering approach for very large spatialdatabases, Proc. of VLDB, NYC, NY, 1998. [2] M. Ester, H. Kriegel, J. Sander, & X. Xu, A density basedalgorithm for discovering clusters in large spatial databaseswith noise, Proc. of VLDB, Bombay, India, 1996. [3] A. Hinneburg & D. Keim, An efficient approach to clusteringin large multimedia databases with noise, Proc. of KDD, NYC,NY, 1998. [4] G. Guha, R. Rastogi, & K. Shim, CURE: An efficient clusteringalgorithm for large databases, Proc. of the 1998 ACM SIGMOD,Seattle, WA, 1998. [5] T. Zhang, R. Ramakrishnan, & M. Livny, BIRCH: An efficientdata clustering method for very large databases, Proc. ofSIGMOD, Montreal, Canada, 1996, 103–114. [6] F.W. Yang, H.J. Lin, & S.H. Yen, An improved unsupervisedclustering algorithm based on population Markov chain, Inter-national Journal of Computers and Applications, 202, 2007,202–210. [7] R. Mitchell, Mean-tracking as an efficient preprocessor for theK-means clustering algorithm, Artificial Intelligence and SoftComputing, 357, 2002, 78–83. [8] K. Chen & L. Liu, Cluster rendering of skewed datasets viavisualization, Proc. of ACM Symposium on Applied Computing,Melbourne, 2003.
Important Links:
Go Back