DENOISING OF TWO-DIMENSIONAL GEOMETRIC DISCONTINUITIES

J. Shen, D. Yoon, D. Zhao, and Y. Song

References

  1. [1] G.R. Arce & R.E. Foster, Detail preserving ranked-order based filters for image processing. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-37(1), 1989, 83–98.
  2. [2] J.A. Bangham, Properties of a series of nested median filters, namely the data sieve. IEEE Transactions on Signal Processing, 41(1), 1993, 31–42.
  3. [3] A.C. Bovik, T.S. Huang, & D.C. Munson, The effect of median filtering on edge estimation and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2), 1987, 181–194.
  4. [4] A.B. Hamza, P.L. Luque-Escamilla, J. Martinez-Aroza, & R. Roman-Roldan, Removing noise and preserving details with relaxed median filters. Journal of Mathematical Imaging and Vision, 11, 1999, 161–177.
  5. [5] R.C. Hardie & K.E. Barner, Rank conditioned rank selection filters for signal processing. IEEE Transactions on Signal Processing, 42(2), 1994, 192–206.
  6. [6] S.J. Ko & Y.H. Lee, Center weighted median filters and their applications to image enhancement. IEEE Transactions on Circuits Systems, 38(9), 1991, 984–993.
  7. [7] Y. Shen & K.E. Barner, Fuzzy vector median-based surface smoothing. IEEE Transactions on Visualization and Computer Graphics, 10(3), 2004, 266–277.
  8. [8] T. Song, M. Gabbouj, & Y. Neuvo, Center weighted median filters: Some properties and applications in image processing. Signal Processing, 35(3), 1994, 213–229.
  9. [9] H. Yagou, Y. Ohtake, & A. Belyaev, Mesh smoothing via mean and median filtering applied to face normals. Geometric Modeling and Processing, 2002, 124–131.
  10. [10] R. Yang, L. Yin, M. Gabbouj, J. Astola, & Y. Neuvo, Optimal weighted median filters under structural constraints. IEEE Transactions on Signal Processing, 43(3), 1995, 591–604.
  11. [11] O. Yli-Harja, J. Astola, & Y. Neuvo, Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation. IEEE Transactions on Signal Processing, 39(2), 1991, 395–409.
  12. [12] C. Bajaj & G. Xu, Anisotropic diffusion of subdivision surfaces and functions on surfaces. ACM Transactions on Graphics, 22(1), 2003, 4–32.
  13. [13] P. Choudhury & J. Tumblin, The trilateral filter for high contrast images and meshes. Proceedings of the Eurographics Symposium on Rendering, 2003, 186–196.
  14. [14] U. Clarenz, U. Diewald, & M. Rumpf, Anisotropic geometric diffusion in surface processing. Proceedings of IEEE Visualization, Salt Lake City, Utah, USA, 2000, 397–405.
  15. [15] M. Desbrun, M. Meyer, P. Schroder, & A.H. Barr, Anisotropic feature-preserving denoising of height fields and bivariate data. Graphics Interface, Montreal, Quebec, Canada, 2000, 145–152.
  16. [16] S. Fleishman, I. Drori, & D. Cohen-Or, Bilateral mesh denoising. Proc. 30th Annual Conf. on Computer Graphics and Interactive Techniques, 2003, 950–953.
  17. [17] K. Hildebrandt & K. Polthier, Anisotropic filtering of nonlinear surface features. Computer Graphics Forum, 23(3), 2004, 391–400.
  18. [18] T.R. Jones, F. Durant, & M. Desbrun, Non-iterative, featurepreserving mesh smoothing. Proc. 30th Annual Conf. on Computer Graphics and Interactive Techniques, San Diego, CA, USA, 2003, 943–949.
  19. [19] M. Meyer, M. Desbrun, P. Schroder, & A.H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds. In: H.C. Hege, K. Polthier (Eds.), Visualization and mathematics III (Heidelberg: Springer-Verlag; 2003), Heidelberg, Germany, 35–57.
  20. [20] Y. Ohtake, A. Belyaev, & H. Seidel, Mesh smoothing by adaptive and anisotropic Gaussian filter. Vision, Modeling, and Visualization, 2002, 203–210.
  21. [21] P. Perona & J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 1990, 629–639.
  22. [22] T. Tasdizen, R.T. Whitaker, P. Burchard, & S. Osher, Anisotropic geometric diffusion in surface processing. IEEE Visualization, Boston, MA, USA, 2002, 125–132.
  23. [23] C. Tomasi & R. Manduchi, Bilateral filtering for gray and color images. Proceedings of IEEE ICCV, Bombay, India, 1998, 836–846.
  24. [24] H. Zhang & E.L. Fiume, Mesh smoothing with shape or feature preservation, in: J. Vince & R. Earnshaw (Eds.), Advances in Modeling, Animation and Rendering, Springer, 2002, 167–182.
  25. [25] S. Fleishman, D. Cohen-Or, & C. Silva, Robust moving leastsquares fitting with sharp features. ACM Transactions on Graphics, 24(3), 2005, 544–552.
  26. [26] T. Bulow, Spherical diffusion for 3D surface smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(12), 2004, 1650–1654.
  27. [27] T. Tasdizen & R.T. Whitaker, High-order nonlinear priors for surface reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(7), 2004, 878–891.
  28. [28] J. Shen, D. Yoon, H. Shou, D. Zhao, & S. Liu, A set of denoising algorithms for two-dimensional closed curves. Computer-Aided Design and Applications, 3(1–4), 2006, 1–10.
  29. [29] H. Hoppe, T.D. Rose, T. Duchamp, J. MaDonald, & W. Stuetzle, Mesh optimization. Proc. 20th Annual Conf. on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 1993, 19–26.
  30. [30] Q. Xia, M.Y. Wang, & X. Wu, Orthogonal least squares in partition of unity surface reconstruction with radial basis function. Geometric Modeling and Imaging – New Trends, London, England, 2006, 28–33.

Important Links:

Go Back