EFFECT OF WEIGHTING CONSTANTS ON THE CONVERGENCE OF THE STEEPEST DESCENT ALGORITHM USED FOR THE DESIGN OF A POWER SYSTEM STABILIZER

R. Tiako and K.A. Folly

References

  1. [1] F.P. Demello & C. Concordia, Concept of synchronous machine stability as affected by excitation control, IEEE Transactions on Power System, 11 (4), 1969, 316–329.
  2. [2] F. Fatehi, J.R. Smith, & D.A. Pierre, Robust power system controller design based on measured models, IEEE Trans. on Power System, 11 (2), 1996, 774–780.
  3. [3] Y.N. Yu, K. Vongsuriya, & I.N. Welman, Application of an optimal control theory to a power system, IEEE Transactions on PAS, 89 (1), 1970, 55–61.
  4. [4] K.A. Folly & K. Yoshimura, Design of H∞ − PSS for illconditioned power system models, IEEE Tokyo Chapter PES Meetings, IEE Japan, PE-98-25, Oct. 1998, 19–25.
  5. [5] S.S. Chen & O.P. Malik, Power system stabilizer design using μ-synthesis, IEEE Transactions on Energy Conversion, 10, 1995, 175–181.
  6. [6] K.J. Astrom & B. Wittenmark, Adaptive control, Second Edition 1994 (Reading, Mass: Addison-Wesley, 1989).
  7. [7] K. Yoshimura, N. Uchida, & T. Yoshida, Generator-PSS parameter optimization method for multiple power flow conditions using eigen-value analysis, Proc. International Conf. on Electrical Engineering (ICEE) in Korea, 1995.
  8. [8] R.V. Larsen & Swann, Applying power system stabilizer, Part 1 IEEE Transaction on PAS, 100 (4), 1981, 3017–3024.
  9. [9] R.W. Daniel, An introduction to numerical methods and optimization techniques (Elsevier, New York: North-Holland, Inc., 1978).
  10. [10] G. Rogers, Power system oscillations (Boston: Kluwer Academic Publishers, 2000).
  11. [11] A.S. Deif, Advanced matrix theory for scientist and engineers (Tunbridge wells, Kent, England: Abacus Press, 1982).

Important Links:

Go Back