A TRANSIENT FINITE ELEMENT SIMULATION OF THE TEMPERATURE FIELD AND BEAD PROFILE OF T-JOINT LASER WELDS

N.S. Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy, and S.R. Kumar

References

  1. [1] T.L. Teng, C.P. Fung, P.H. Chang, & W.C. Yang, Analysis of residual stresses and distortions in T-joint fillet welds, International Journal of Pressure Vessels and Piping, 78, 2001, 523–538.
  2. [2] K.R. Balasubramanian, K. Sankaranarayanasamy, & G Buvanashekaran, Analysis of laser welding parameters using artificial neural network, International Journal for the Joining of Materials, 18 (3/4), 2006, 99–104.
  3. [3] K.R. Balasubramanian, N.S. Shanmugam, G. Buvanashekaran, & K. Sankaranarayanasamy, Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet, Advances in Production Engineering & Management Journal, 3 (2), 2008, 93–105.
  4. [4] S.A. Tsirkas, P. Papanikos, & Th. Kermanidis, Numerical simulation of the laser welding process in butt-joint specimens, Journal of Materials Processing Technology, 134, 2003, 59–69.
  5. [5] D. Rosenthal, The theory of moving source of heat and it’s application to metal treatment, Trans. ASME, 68, 1946, 849– 866.
  6. [6] J. Sabbaghzadeh, M. Azizi, & M.J. Torkamany, Numerical and experimental investigation of seam welding with a pulsed laser, Journal of Optics & Laser Technology, 40, 2008, 289–296.
  7. [7] R. Spina, L. Tricarico, G. Basile, & T. Sibillano, Thermomechanical modeling of laser welding of AA5083 sheets, Journal of Materials Processing Technology, 191, 2007, 215–219.
  8. [8] W.S. Chang & S.J. Na, Prediction of laser spot weld shape by numerical analysis and neural network, Metallurgical and Material Transactions B, 32B, 2001, 723–731.
  9. [9] S. Sarkani, V. Tritchkov, & G. Michaelov, An efficient approach for computing residual stresses in welded joints, Journal of Finite Elements in Analysis and Design, 35, 2000, 247–268.
  10. [10] ESI-Group, SYSWELD Reference Manual, 2007. 121
  11. [11] H.S. Carslaw & J.C. Jaeger, Conduction of heat in solids, Second Edition (Oxford: Clarendon Press, 1988).
  12. [12] J. Goldak, M. Gu, & L. Karlsson, Numerical aspects of modelling welds, ASM Handbook on Welding, 6, 1993, 1131– 1140.
  13. [13] M.R. Frewin & D.A. Scott, Finite element model of pulsed laser welding, Welding Journal, 78, 1999, 15s–22s.
  14. [14] D.V. Hutton, Fundamentals of finite element analysis, First Edition (McGraw-Hill Publisher, 2003).
  15. [15] O. Grong, Metallurgical modelling of welding, Second Edition (England: Woodhead Publishing Ltd., 2005).
  16. [16] A. De, S.K. Maiti, C.A. Walsh, & H.K.D.H. Bhadeshia, Finite element simulation of laser spot welding, Journal of Science and Technology of Welding and Joining, 8 (5), 2003, 377–384.
  17. [17] D. Gery, H. Longb, & P. Maropoulos, Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding, Journal of Materials Processing Technology, 167, 2005, 393–401.
  18. [18] H. Du, L. Hu, J. Liu, & X. Hu, A study on the metal flow in full penetration laser beam welding for titanium alloy, Computational Materials Science, 29, 2004, 419–427.
  19. [19] C.S. Wu, H.G. Wang, & Y.M. Zhang, A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile, Welding Journal, 85 (12), 2006, 284s–291s.
  20. [20] G. Tsoukantas & G. Chryssolouris, Theoretical and experimental analysis of the remote welding process on thin, lapjoined AISI 304 sheets, International Journal of Advanced Manufacturing Technology, 35 (9/10), 2008, 880–894.

Important Links:

Go Back