ON STEIN TYPE TWO-STAGE SHRINKAGE TESTIMATOR

Z.A. Al-Hemyari∗

References

  1. [1] A.C. Davison, Statistical models, (UK, Cambridge University Press, 2003).
  2. [2] S.K. Sinha, Reliability and life testing (New Delhi, Wiley Eastern Limited, 1986).
  3. [3] D.J. Davis, The analysis of some failure data, Journal of the American Statistical Assosciation, 47, 1952, 113–150.
  4. [4] I. Bazovsky, Reliability theory and practice (New Jersey: Prentice Hall, 1961).
  5. [5] I. Karanta, Expert system in forecast model building, Proc. 9th Finish Artificial Intelligence Conf. on AI of tomorrow: Symposium on Theory, Espoo, Finland, 2000, 77–85.
  6. [6] N.S. Kambo, B.R. Handa, & Z.A. Al-Hemyari, Double stage 403 Table 7 Eff(˜μ2|μ0) (E1), E(n|˜μ2)(E2), and (100x(n2|n)(pr{X1 ∈ R2}))(E3) α = 0.01, b = 0.001, n1 = 5, 11, and Different Values of n n n1 = 5 n1 = 11 E1 E2 E3 E1 E2 E3 12 83.299 5.010 16.500 110.921 11.010 4.250 14 148.058 5.030 37.125 150.972 11.030 12.214 16 231.551 5.050 49.500 197.237 11.050 26.937 18 334.116 5.070 57.950 249.763 11.070 34.500 20 456.225 5.090 63.643 308.603 11.090 40.550 22 598.497 5.110 68.063 373.825 11.110 44.500 24 761.709 5.130 71.500 445.506 11.130 49.625 26 946.813 5.150 74.250 523.737 11.150 53.115 28 1155.000 5.170 76.500 608.622 11.170 56.107 30 1387.500 5.190 68.375 700.276 11.190 58.700 32 1646.000 5.210 79.972 798.827 11.210 60.929 34 1932.500 5.230 81.321 905.420 11.230 62.980 36 2249.000 5.250 82.500 1017.200 11.250 64.886 38 2598.300 5.270 83.531 1137.400 11.270 66.342 40 2983.300 5.290 84.441 1565.100 11.290 67.775 42 3407.700 5.310 85.250 1400.600 11.310 69.071 44 3875.700 5.3300 85.974 1544.100 11.320 70.250 56 7859.300 5.450 89.100 2588.600 11.450 74.554 shrunken estimator of the mean of a normal distribution, Journal of Information and Optimization Science, 12, 1991, 1–11.
  7. [7] C. Stein, A two-sample test for a linear hypothesis whose power is independent of the variance, The Annals of Mathematical Sciences, 16(2), 1945, 45–258.
  8. [8] S.K. Katti, Use of some a prior knowledge in the estimation of means from double samples, Biometrics, 18, 1962, 139–147.
  9. [9] J.C. Arnold & H.A. Al-Bayyati, On double stage estimation of the mean using prior knowledge, Biometrics, 26, 1970, 787–800.
  10. [10] V.B. Waiker, F.J. Schuurmann, & T.E. Raghunathan, On a two stage shrinking testimator of the mean of a normal distribution, Communication in Statistics – Theory and Methods, A 13(15), 1984, 1901–1913.
  11. [11] V.B. Waiker, M.V. Ratnaparkhi, & F.J. Schuurmann, Improving the efficiency of the two stage shrinking estimators using bootstrap methods, Proc. International Conf. on Monte Carlo and Quasi Monte Carlo Methods, Springer, Hong Kong, 2001, 1–7 available at: www.galaxy.gmu.edu/interface.
  12. [12] N.S. Kambo, B.R. Handa, & Z.A. Al-Hemyari, On Huntsberger type shrinkage estimator, Communication in Statistics – Theory and Methods, 2(3), 1992, 823–841.
  13. [13] H.P. Singh, S. Saxena, & M.R. Espejo, Estimation of standard deviation in normal parent by shrinkage towards an interval, Journal of Statistical Planning and Inference, 126, 2004, 479–493.
  14. [14] H.P. Singh & S. Saxena, Estimating fisher information in normal population with prior information, Statistica, LXV, 2005, 73–91.
  15. [15] S. Saxena & H.P. Singh, From ordinary to shrinkage square root estimators, Communication Statistics – Theory and Methods, 35, 2006, 1037–1058.
  16. [16] Z.A. Al-Hemyari, A. Khurshid, & A. Al-Joberi, On Thompson type estimators for the mean of normal distribution, Sent for publication, Revista Investigacion Operacionl, 30(2), 2009, 109–116.

Important Links:

Go Back