SYNCHRONIZATION OF TWO CHAOTIC SYSTEMS USING NONLINEAR RECURSIVE CONTROLLER

A.M. Harb∗ and M.A. Zohdy∗∗

References

  1. [1] E.H. Abed & J.-H Fu, Local feedback stabilization and bifurca-tion control, I. Hopf bifurcation, Systems and Control Letters,321Figure 8. Time history for the two systems: (a) using master–slave and (b) backstepping.7, 1986, 11–17.
  2. [2] H.O. Wang & E.H. Abed, Control of nonlinear phenomena atthe inception of voltage collapse, Proc. 1993 Am. control conf.,San Francisco, CA, June 1993, 2071–2075.
  3. [3] A.M. Harb, A.H. Nayfeh, C. Chin, & L. Mili. On the effectsof machine saturation on subsynchronous oscillations in powersystems, Electric Machines and Power Systems Journal, 28(11),1999.
  4. [4] E.H. Abed & P.P. Varaiya, Nonlinear oscillations in powersystems, International Journal of Electric Power and EnergySystem, 6, 1989, 37–43.
  5. [5] E.H. Abed, J.C. Alexander, H. Wang, A.H. Hamdan et al.Dynamic bifurcation in a power system model exhibitingvoltage collapse, Proc. 1992 IEEE Int. Symp. on Circuit andSystems, San Diego, CA, 1992.
  6. [6] E.H. Abed & J.H. Fu, Local feedback stabilization and bifurca-tion control, I. Hopf bifurcation, System and Control Letters,7, 1986, 11–17.
  7. [7] E.H. Abed & J.H. Fu, Local feedback stabilization and bifur-cation control, II. Stationary bifurcation, System and ControlLetters, 8, 1987, 467–473.
  8. [8] A.H. Nayfeh & B. Balachandran, Applied nonlinear dynamics,(New York: John Wiley, 1994).
  9. [9] E. Ott, Chaos in dynamical systems (Cambridge, England:Cambridge University Press, 1993).
  10. [10] E. Ott, C. Grebogi, & J.A. Yorke, Controling chaotic dynamicalsystems, in D.K. Campbell (Ed.), CHAOS: Soviet-AmericanPerspectives on nonlinear science, 1990, 153–172.
  11. [11] A. Hubler, Adaptive control of chaotic systems, HelveticaPhysica Acta, 62, 1989, 343–346.
  12. [12] A. Hubler & E. Luscher, Resonant stimulation and control ofnonlinear oscillators, Naturwissenschaften, 76, 1989, 67–69.
  13. [13] E.A. Jackson, Control of dynamic flows with attractors, PhysicsReview A, 44, 1991, 4839–4853.
  14. [14] L. Pecora & T. Carroll, Synchronization in chaotic systems,Physical Review Letters, 64, 1990, 821–823.
  15. [15] L. pecora & T. Carroll, Driving systems with chaotic signals,Physical Review Letters, 44, 1991, 2374–2383.
  16. [16] L.J. Kocarev, K.S. Eckert, & L.O. Chua, Experimental demon-stration of secure communication via chaotic synchronization,World Scientific Series on Nonlinear Science, series B, 1,2000, 371–378.
  17. [17] A.L. Oppenheim, G.W. Wornell, S.H. Isabelle, & K.M. Cuomo,Signal processing in the context of chaotic signals, Proc. 1992IEEE ICASSPIV, 117–120.
  18. [18] K.S. Halle, C. Wu, K. Itoh, & L.O. Chua, Spread spectrumcommunication through modulation of chaos in Chua’s circuit,World scientific series on nonlinear science, series B, 1, 2001,379–394.
  19. [19] D.R. Frey, Chaotic digital encoding: An approach to securecommunications, IEEE Transactions on Circuits and Systems,40(10), 1993, 660–666.
  20. [20] V.B. Ryabov, P.V. Usik, & D.M. Vavriv, Chaotic maskingwithout synchronization, International Journal of Bifurcationand Chaos, 9(6), 1999, 1181–1187.
  21. [21] T.L. Carroll, G.A. Johnson, & L.M. Pecora, Parameter-insensitive and narrow-band synchronization of chaotic cir-cuits, International Journal of Bifurcation and Chaos, 9(11),1999, 2189–2196.322
  22. [22] A. Harb, A. Zaher, & M. Zohdy, Nonlinear recursive backstep-ping chaos control (Alaska: ACC, 2002).

Important Links:

Go Back