MODELLING VAPOUR CAVITATION IN PIPES WITH FLUID–STRUCTURE INTERACTION

L. Hadj-Ta¨eb∗ and E. Hadj-Ta¨eb∗ ı ı

References

  1. [1] L. Bergeron, Waterhammer in hydraulics and wave surges in electricity (New York: John Wiley & Sons, 1961).
  2. [2] V.L. Streeter & E.B. Wylie, Hydraulic transients (New York: McGraw-Hill, 1967).
  3. [3] J. Siemons, The phenomenon of cavitation in a horizontal pipe-line due to a sudden pump failure, Journal of Hydraulic research, 5(2), 1967, 135–152.
  4. [4] E.B. Wylie, Simulation of vaporous and gaseous cavitation, ASME Journal of Fluids Engineering, 106, 1984, 307–311.
  5. [5] E.B. Wylie & V.L. Streeter, Fluid transients in systems (Englewood Cliffs, NJ: Prentice Hall, 1993).
  6. [6] A. Bergant & A.R. Simpson, Pipeline column separation flow regimes, Journal of Hydraulic Engineering, ASCE, 125(8), 1999, 835–848.
  7. [7] J.-J. Shu, Modelling vaporous cavitation on fluid transients, International Journal of Pressure Vessels and Piping, 80(3), 2003, 187–195.
  8. [8] L. Hadj-Ta¨ıeb & E. Hadj-Ta¨ıeb, Numerical simulation of transient vaporous cavitating flow in horizontal pipelines, International Journal of Modelling and Simulation, 27(4), 2007, 347–354.
  9. [9] E. Hadj-Ta¨ıeb & T. Lili, Les écoulements transitoires dans les conduites déformables avec dégazage de l’air dissous (Transient flows in plastic pipes with dissolved air degasification), La Houille Blanche, 5, 2001, 99–107 (in French).
  10. [10] K. Sanada, A. Kitagawa, & T. Takenaka, A study on analytical methods by classification of column separations in water pipeline, Transactions of the JSME, Series B, 56(523), 1990, 585–593 (in Japanese).
  11. [11] M. Kessal, Modélisation en écoulement homog`ene des phénom`enes de cavitation lors des régimes transitoires en conduite, Engineer-Doctor These, Mechanic speciality, INSA of Lyon, 1987.
  12. [12] R. Courant & K.O. Friederichs, Supersonic flow and shock waves (New York: Interscience Publishers, 1948).
  13. [13] S. Stuckenbruck, D.C. Wiggert, & R.S. Otwell, The influence of pipe motion on acoustic wave propagation, Transactions of the ASME, 107, 1985, 518–522.
  14. [14] P.D. Lax & B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Communications on Pure and Applied Mathematics, 17, 1966, 381–398. 269

Important Links:

Go Back