ROBUST TRACKING AND MODEL FOLLOWING OF TIME-DELAY SYSTEMS

M.-C. Pai∗

References

  1. [1] K.K. Shyu & Y.C. Chen, Robust tracking and model follow-ing for uncertain time-delay systems, International JournalControl, 62, 1995, 589–600.
  2. [2] S. Oucheriah, Robust tracking and model following of uncertaindynamic delay systems by memoryless linear controllers, IEEETransactions on Automatic Control, 44, 1999, 1473–1477.
  3. [3] A.M.H. Basher, Linear controller for robust tracking of un-certain time-delay system, Proc. IEEE Southeastcon ’99.,Lexington, Kentucky, USA, 1999, 1–9.
  4. [4] M.L. Ni, M.J. Er, W.E. Leithead, & D.J. Leith, Robusttracking controllers of uncertain delay, Proc. 39th IEEE Conf.on Decision and Control, Sydney, Australia, 2000, 1539–1543.
  5. [5] M.L. Ni, M.J. Er, W.E. Leithead, & D.J. Leith, New approachto the design of robust tracking and model following controllerfor uncertain delay systems, IEE Proceedings-Control Theoryand Applications, 148(6), 2001, 472–477.
  6. [6] Y.D. Zhao, G.Y. Tang, & C. Li, Optimal output tracking controlfor nonlinear time-delay systems, Proc. 6th World Congresson Intelligent Control and Automation, Dalian, China, 2006,757–761.
  7. [7] C. Lin, Q.G. Wang, & T.H. Lee, H∞ output tracking controlfor nonlinear systems via T-S fuzzy model approach, IEEETransactions on Systems, Man, and Cybernetics, 36(2), 2006,450–457.
  8. [8] Z. Qu, Z. Du, & Z. Liu, Adaptive fuzzy control for SISOnonlinear time-delay systems, Proc. 26th Chinese ControlConf., Zhangjiajie, Hunan, China, 2007, 246–249.
  9. [9] Q.K. Li, G.M. Dimirovski, & J. Zhao, Robust tracking controlfor switched linear systems with time-varying delays, AmericanControl Conference, Seattle, Washington, USA, 2008, 1576–1581.
  10. [10] H. Wu, Robust model following controllers guaranteeing zero-tracking error for uncertain systems including delayed stateperturbations, Proc. IEEE International Conf. on ControlApplications, Mexico City, Mexico, 2001, 1054–1059.142
  11. [11] H. Wu, Adaptive robust tracking and model following ofuncertain dynamical systems with multiple time-delays, IEEETransactions on Automatic Control, 49, 2004, 611–616.
  12. [12] S.M. Song, X.L. Chen, & W.Y. Qiang, Robust control for modelfollowing of uncertain dynamic time delay system, Proc. SecondInternational Conf. on Machine Learning and Cybernetics,Xi’an, China, 2003, 928–933.
  13. [13] B. Drazenovic’, The invariance condition in variable structuresystems, Automatica, 5, 1969, 287–295.
  14. [14] V.I. Utkin, Variable structure systems with sliding modes,IEEE Transactions on Automatic Control, 22, 1977, 212–222.
  15. [15] J.Y. Hung, W. Gao, & J.C. Hung, Variable structure control:a survey, IEEE Transactions on Industrial Electronic, 40(5),1993, 2–22.
  16. [16] J.H. Kim, E.T. Jeung, & H.B. Park, Robust control forparameter uncertain delay systems in state and control input,Automatica, 32(9), 1996, 1337–1339.
  17. [17] Y. Xia & Y. Jia, Robust sliding-mode control for uncertaintime-delay systems: an LMI approach, IEEE Transactions onAutomatic Control, 48(6), 2003, 1086–1092.
  18. [18] X. Li & R.A. DeCarlo, Robust sliding mode control of uncertaintime delay systems, International Journal of Control, 76(13),2003, 1296–1305.
  19. [19] Z. Xiang, Q. Chen, & W. Hu, Robust mixed H2/H∞ controlfor uncertain singular systems with state delay, Control andIntelligent Systems, 34(2), 2006, 119–124.
  20. [20] M.C. Pai, Dynamic output feedback sliding mode control foruncertain systems with state and input delays, Control andIntelligent Systems, 36(1), 2008, 92–97.
  21. [21] T.H. Hopp & W.E. Schmitendorf, Design of a linear controllerfor robust tracking and model following, ASME Journal ofDynamic Systems, Measurement, and Control, 112, 1990,552–558.
  22. [22] S. Boyd, L.E. Ghaoui, E. Feron, & V. Balakrishnan, Linearmatrix inequalities in system and control theory (New York,PA: SIAM Studies in Applied Mathmatics, 1994).

Important Links:

Go Back