ADAPTIVE VISUAL SERVO REGULATION CONTROL FOR CAMERA-IN-HAND CONFIGURATION WITH A FIXED CAMERA EXTENSION1

E. Tatlicioglu,∗ D.M. Dawson,∗∗ and B. Xian∗∗∗

References

  1. [1] E. Tatlicioglu, D.M. Dawson, & B. Xian, Adaptive visual servo regulation control for camera-in-hand configuration with a fixed-camera extension, Proc. IEEE International Conf. on Decision and Control, New Orleans, USA, 2007, 2339–2344.
  2. [2] F. Chaumette & S. Hutchinson, Visual servo control, part i: Basic approaches, IEEE Robotics and Automation Magazine, 13(4), 2006, 82–90.
  3. [3] Y.H. Liu, H. Wang, C. Wang, & K.K. Lam, Uncalibrated visual servoing of robots using a depth-independent interaction matrix, IEEE Transactions on Robotics, 22(4), 2006, 804–817.
  4. [4] Y. Shen, G. Xiang, Y.H. Liu, & K. Li, Uncalibrated visual servoing of planar robots, Proc. IEEE International Conf. on Robotics Automation, Washington, DC, USA, 2002, 580–585.
  5. [5] K. Hosada & M. Asada, Versatile visual servoing without knowledge of true jacobian, Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, Munich, Germany, 1994, 186-191.
  6. [6] B.H. Yoshimi & P.K. Allen, Active, uncalibrated visual servoing, Proc. IEEE International Conf. on Robotics Automation, San Diego, USA, 1994, 156–161.
  7. [7] H.H. Fakhry & W.J. Wilson, Modified resolved acceleration controller for position-based visual servoing, Mathematical and Computer Modelling, 24(5–6), 1996, 1–9.
  8. [8] M. Jagersand, O. Fuentes, & R. Nelson, Experimental evaluation of uncalibrated visual servoing for precision manipulation, Proc. IEEE International Conf. on Robotics and Automation, Albuquerque, USA, 1997, 2874–2880.
  9. [9] B.E. Bishop & M.W. Spong, Toward uncalibrated monocular visual servo, Proc. IEEE Internationl Conf on Robotics and Automation, Leuven, Belgium, 1998, 2664–2669.
  10. [10] A. Ruf, M. Tonko, R. Horaud, & H.H. Nagel, Visual tracking of an end-effector by adaptive kinematic prediction, Proc. IEEE International Conf. on Robotics and Automation, Grenoble, France, 1997, 893–898.
  11. [11] N.P. Papanikolopoulos & P.K. Khosla, Adaptive robotic visual tracking: Theory and experiments, IEEE Transactions on Automatic Control, 38(3), 1993, 429–445.
  12. [12] N.P. Papanikolopoulos, B.J. Nelson, & P.K. Khosla, Six degree-of-freedom hand/eye visual tracking with uncertain parameters, IEEE Transactions on Robotics and Automation, 11(5), 1995, 725–732.
  13. [13] E. Malis, Visual servoing invariant to changes in cameraintrinsic parameters, IEEE Transactions on Robotics and Automation, 20(1), 2004, 72–81.
  14. [14] J.A. Piepmeier, G.V. McMurray, & H. Lipkin, Uncalibrated dynamic visual servoing, IEEE Transactions on Robotics and Automation, 20(1), 2004, 143–147.
  15. [15] C.P. Lu, E. Mjolsness, & G.D. Hager, Online computation of exterior orientation with application to hand-eye calibration, Mathematical and Computer Modelling, 24(5–6), 1996, 121– 143.
  16. [16] J. Hespanha, Z. Dodds, G.D. Hager, & A.S. Morse, What can be done with an uncalibrated stereo system, Proc. IEEE International Conf. on Robotics and Automation, Leuven, Belgium, 1998, 1366–1372.
  17. [17] S.C. Solanki, W.E. Dixon, C.D. Crane, & S. Gupta, Uncalibrated visual servo control of robot manipulators with uncertain kinematics, Proc. IEEE International Conf. on Decision and Control, San Diego, USA, 2006, 3855–3860.
  18. [18] R. Kelly, E. Bugarin, I. Cervantes, & J. Alvarez-Ramirez, Monocular direct visual servoing for regulation of manipulators moving in the 3d cartesian space, Proc. IEEE International Conf. on Decision and Control, San Diego, USA, 2006, 1782– 1787.
  19. [19] H. Wang & Y.H. Liu, Uncalibrated visual tracking control without visual velocity, Proc. IEEE International Conf. on Robotics and Automation, Orlando, USA, 2006, 2738–2743.
  20. [20] O. Faugeras, Three-dimensional computer vision, (Cambridge, USA: MIT Press, 1993).
  21. [21] E. Malis & F. Chaumette, 2 1/2 d visual servoing with respect to unknown objects through a new estimation scheme of camera displacement, International Journal of Computer Vision, 37(1), 2000, 79–97.
  22. [22] M.W. Spong & M. Vidyasagar, Robot Dynamics and Control. (New York, USA: John Wiley and Sons, Inc., 1989).
  23. [23] J. Yuan, A general photogrammetric method for determining object position and orientation, IEEE Transactions on Robotics and Automation, 5(2), 1989, 129–142.
  24. [24] E. Tatlicioglu, D.M. Dawson, & B. Xian, Derivation of the regression matrices and the unknown coefficients for adaptive visual servo regulation control for camera-inhand configuration with a fixed-camera extension, Technical Report CU/CRB/4/9/07/1, [Online]. Available: http://www.ces.clemson.edu/ece/crb/publictn/tr.htm
  25. [25] E. Tatlicioglu, D.M. Dawson, & B. Xian, Adaptive visual servo regulation control for camera-in-hand configuration with a fixed-camera extension, Technical Report CU/CRB/3/9/07/1, [Online]. Available: http://www.ces.clemson.edu/ece/crb/ publictn/tr.htm
  26. [26] M. Krstic, I. Kanellakopoulos, & P. Kokotovic, Nonlinear and adaptive control design, (New York, USA: John Wiley and Sons, 1995).
  27. [27] M.S. de Queiroz, D.M. Dawson, S.P. Nagarkatti, & F. Zhang, Lyapunov-Based Control of Mechanical Systems, (Boston, USA: Birkhauser, 1999).
  28. [28] J.J.E. Slotine & W. Li, Applied Nonlinear Control, (Englewood Cliffs, USA: Prentice Hall, 1991).
  29. [29] W.E. Dixon, A. Behal, D.M. Dawson, & S. Nagarkatti, Nonlinear control of engineering systems: A lyapunov-based approach, (Boston, USA: Birkhauser, 2003).
  30. [30] V.K. Chitrakaran, D.M. Dawson, J. Chen, & W.E. Dixon, Euclidean position estimation of features on a moving object using a single camera: A lyapunov-based approach, Proc. American Control Conf., Portland, USA, 2005, 4301–4606.

Important Links:

Go Back