I.I. Za’balawi,∗ L.C. Kiong,∗ W.E. Kiong,∗ and S.M.N.A. Senanayake∗∗
[1] T. Zielinska, Biologically inspired motion planning in robotics,Robot Motion and Control, LNCIS 335, 2006, 201–219. [2] N.G. Hatsopoulos,Coupling the neural and physical dynamicsin rhythmic movements, Neural Computation, 8, 1996, 567–581. [3] P.N. Kugler & M.T. Turvey, Information, natural law, and theself-assembly of rhythmic movement (NJ: Lawrence Erlbaum,Hillsdale, 1987). [4] R.M. Alexander & A.S. Jayes, A dynamic similarity hypothesisfor the gaits of quadrupedal mammals, Journal of ZoologyLondon, 201, 1983, 135–152. [5] C.H. Greenewalt, The flight of birds, Transactions of theAmerican Philosophical Society 65, 1975, 21–23. [6] A.H. Cohen, S. Rossignol, & S. Griller, Neural control ofrhythmic movements in vertebrates (New York: Wiley, 1988). [7] C. Pribe, S. Grossberg, & M.A. Cohen, Neural control ofinterlimb oscillations, Biological Cybernetics, 77, 1997, 141–152. [8] K. Berns, W. Ilg, M. Deck, J. Albiez, & R. Dillmann, Me-chanical construction and computer architecture of the four-legged walking machine BISAM, IEEE/ASME Transactionson Mechanics, 4, 1999, 30–38. [9] T.G. Brown, On the nature of the fundamental activity of thenervous centers, Journal Physiology, 48(1), 1914, 18–46. [10] T. Zielinska, Coupled oscillators utilized as gait rhythm gener-ators of a two-legged walking machine, Biological Cybernetics,74, 1996, 263–273. [11] L. Liu, A.B. Wright, & G.T. Anderson, Trajectory planningand control for human-like robot leg with coupled neural-oscillators, Proc. of Mechatronics, 2000, 9/00. [12] I.S. Bay & H. Hemami, Modeling of neural pattern generatorwith coupled nonlinear oscillators, IEEE Transactions onBiomedical Engineering, 34, 1987, 297–306. [13] D.A. Wells, Theory and problems of lagrangian dynamics (NewYork, USA: McGraw-Hill, Inc. 1967). [14] D.A. Winter, Biomechanics and motor control of human move-ment, Second edition, (Toronto, Canada: John Wiley & Sons,Inc, 1990). [15] S. Collins, A. Ruina, R. Tedrake, & M. Wisse, Efficient bipedalrobots based on passive-dynamic walkers, Science, 307, 2005,1082–1085. [16] M. Srinivasan & A. Ruina, Computer optimization of a minimalbiped model discovers walking and running, Nature, 439 (5),2006, 72–75. [17] O. Haavisto, Development of a walking robot model and itsdata-based modeling and control, Master Dissertation, HelsinkiUniversity of Technology, Helsinki, 2004. [18] C.T. Farley & A. Gonzalez, Leg stiffness and stride frequencyin human running, Journal of Biomechanics, 29 (2), 1996,181–186. [19] B.M. Nigg & W. Liu, The effect of muscle stiffness and dampingon simulated impact force peaks during running, Journal ofBiomechanics, 32 (8), 1999, 849–856. [20] W. Liu & B.M. Nigg, A mechanical model to determine theinfluence of masses and mass distribution on the impact forceduring running, Journal of Biomechanics, 33 (2), 2000, 219–224. [21] T.R. Derrick, G.E. Caldwell, & J. Hamill, Modeling the stiffnesscharacteristics of human body while running with various stridelengths, Journal of Applied Biomechanics, 16 (1), 2000, 36–51. [22] A. Thorstensson & H. Robertson, Adaptations to changingspeed in human locomotion: speed of transition betweenwalking and running, Acta Physiologica Scandinavica, 131,1987, 211–214. [23] A.E. Minetti, L.P. Ardigo, & F. Saibene, The transition betweenwalking and running in humans: metabolic and mechanicalaspects at different gradients, Acta Physiologica Scandinavica,150, 1994, 315–323. [24] M. Srinivasan & A. Ruina, Computer optimization of a minimalbipedal model discovers walking and running, Nature 439, 5January 2006, 72–75. doi:10.1038/nature04113. [25] D. Montgomery, Response surface methodology, process andproduct optimization using designed Experiments (New York:John Wiley & Sons, 2002). [26] G.E. Box & N.R. Draper, Empirical model-building and re-sponse surfaces (New York: John Wiley & sons, 1987). [27] Design-Expert (State-Ease, Inc. 2021 East Hennepin Ave, suite191 Minneapolis, MN 55413, 2002).
Important Links:
Go Back