GLOBAL ENTRAINMENT EFFECT ON BIPED ROBOT LOCOMOTION ENERGY

I.I. Za’balawi,∗ L.C. Kiong,∗ W.E. Kiong,∗ and S.M.N.A. Senanayake∗∗

References

  1. [1] T. Zielinska, Biologically inspired motion planning in robotics, Robot Motion and Control, LNCIS 335, 2006, 201–219.
  2. [2] N.G. Hatsopoulos,Coupling the neural and physical dynamics in rhythmic movements, Neural Computation, 8, 1996, 567– 581.
  3. [3] P.N. Kugler & M.T. Turvey, Information, natural law, and the self-assembly of rhythmic movement (NJ: Lawrence Erlbaum, Hillsdale, 1987).
  4. [4] R.M. Alexander & A.S. Jayes, A dynamic similarity hypothesis for the gaits of quadrupedal mammals, Journal of Zoology London, 201, 1983, 135–152.
  5. [5] C.H. Greenewalt, The flight of birds, Transactions of the American Philosophical Society 65, 1975, 21–23.
  6. [6] A.H. Cohen, S. Rossignol, & S. Griller, Neural control of rhythmic movements in vertebrates (New York: Wiley, 1988).
  7. [7] C. Pribe, S. Grossberg, & M.A. Cohen, Neural control of interlimb oscillations, Biological Cybernetics, 77, 1997, 141– 152.
  8. [8] K. Berns, W. Ilg, M. Deck, J. Albiez, & R. Dillmann, Mechanical construction and computer architecture of the fourlegged walking machine BISAM, IEEE/ASME Transactions on Mechanics, 4, 1999, 30–38.
  9. [9] T.G. Brown, On the nature of the fundamental activity of the nervous centers, Journal Physiology, 48(1), 1914, 18–46.
  10. [10] T. Zielinska, Coupled oscillators utilized as gait rhythm generators of a two-legged walking machine, Biological Cybernetics, 74, 1996, 263–273.
  11. [11] L. Liu, A.B. Wright, & G.T. Anderson, Trajectory planning and control for human-like robot leg with coupled neuraloscillators, Proc. of Mechatronics, 2000, 9/00.
  12. [12] I.S. Bay & H. Hemami, Modeling of neural pattern generator with coupled nonlinear oscillators, IEEE Transactions on Biomedical Engineering, 34, 1987, 297–306.
  13. [13] D.A. Wells, Theory and problems of lagrangian dynamics (New York, USA: McGraw-Hill, Inc. 1967).
  14. [14] D.A. Winter, Biomechanics and motor control of human movement, Second edition, (Toronto, Canada: John Wiley & Sons, Inc, 1990).
  15. [15] S. Collins, A. Ruina, R. Tedrake, & M. Wisse, Efficient bipedal robots based on passive-dynamic walkers, Science, 307, 2005, 1082–1085.
  16. [16] M. Srinivasan & A. Ruina, Computer optimization of a minimal biped model discovers walking and running, Nature, 439 (5), 2006, 72–75.
  17. [17] O. Haavisto, Development of a walking robot model and its data-based modeling and control, Master Dissertation, Helsinki University of Technology, Helsinki, 2004.
  18. [18] C.T. Farley & A. Gonzalez, Leg stiffness and stride frequency in human running, Journal of Biomechanics, 29 (2), 1996, 181–186.
  19. [19] B.M. Nigg & W. Liu, The effect of muscle stiffness and damping on simulated impact force peaks during running, Journal of Biomechanics, 32 (8), 1999, 849–856.
  20. [20] W. Liu & B.M. Nigg, A mechanical model to determine the influence of masses and mass distribution on the impact force during running, Journal of Biomechanics, 33 (2), 2000, 219– 224.
  21. [21] T.R. Derrick, G.E. Caldwell, & J. Hamill, Modeling the stiffness characteristics of human body while running with various stride lengths, Journal of Applied Biomechanics, 16 (1), 2000, 36–51.
  22. [22] A. Thorstensson & H. Robertson, Adaptations to changing speed in human locomotion: speed of transition between walking and running, Acta Physiologica Scandinavica, 131, 1987, 211–214.
  23. [23] A.E. Minetti, L.P. Ardigo, & F. Saibene, The transition between walking and running in humans: metabolic and mechanical aspects at different gradients, Acta Physiologica Scandinavica, 150, 1994, 315–323.
  24. [24] M. Srinivasan & A. Ruina, Computer optimization of a minimal bipedal model discovers walking and running, Nature 439, 5 January 2006, 72–75. doi:10.1038/nature04113.
  25. [25] D. Montgomery, Response surface methodology, process and product optimization using designed Experiments (New York: John Wiley & Sons, 2002).
  26. [26] G.E. Box & N.R. Draper, Empirical model-building and response surfaces (New York: John Wiley & sons, 1987).
  27. [27] Design-Expert (State-Ease, Inc. 2021 East Hennepin Ave, suite 191 Minneapolis, MN 55413, 2002).

Important Links:

Go Back