LYAPUNOV-BASED CONTROL OF A ROBOT AND MASS-SPRING SYSTEM UNDERGOING AN IMPACT COLLISION

K. Dupree,∗ C.-H. Liang,∗ G. Hu,∗ and W.E. Dixon∗

References

  1. [1] O. Khatib, A unified approach for motion and force control ofrobot manipulators: The operational space formulation, IEEEJournal of Robotics and Automation, 3(1), 1987, 43–53.
  2. [2] S. Eppinger & W. Seering, Three dynamic problems in robotforce control, in Proc. of IEEE Int. Conf. on Robotics andAutomation, 14–19 May 1989, 392–397.
  3. [3] R. Anderson & M. Spong, Hybrid impedance control of roboticmanipulators, in Proc. of IEEE Int. Conf. on Robotics andAutomation, (4), 1987, 1073–1080.
  4. [4] R. Volpe & P. Khosla, A theoretical and experimental in-309vestigation of explicit force control strategies for manipula-tors, International Journal of Robotic Research, 12(4), 1994,670–683.
  5. [5] D.M. Dawson, F.L. Lewis, & J.F. Dorsey, Robust force controlof a robot manipulator, International Journal of RoboticResearch, 11, 1992, 312–319.
  6. [6] M.D. Queiroz, J. Hu, D. Dawson, T. Burg, & S. Donepudi,Adaptive position/force control of robot manipulators withoutvelocity measurements: theory and experimentation, IEEETransactions on Systems, Man, and Cybernetics B, Cybernet-ics, 27(5), 1997, 796–809.
  7. [7] S. Hayati, Hybrid position/force control of multi-arm coop-erating robots, in Proc. of IEEE Int. Conf. on Robotics andAutomation, 3, 1986, 82–89.
  8. [8] O. Khatib & J. Burdick, Motion and force control of robotmanipulators, in Proc. of IEEE Int. Conf. on Robotics andAutomation, 3, 1986, 1381–1386.
  9. [9] T. Yoshikawa, Dynamic hybrid position/force control of robotmanipulators description of hand constraints and calculationof joint driving force, Proc. of IEEE Int. Conf. on Roboticsand Automation, 3, 1986, 1393–1398.
  10. [10] Y.-H. Chen & S. Pandey, Uncertainty bound-based hybridcontrol for robot manipulators, IEEE Transactions on Roboticsand Automation, 6(3), 1990, 303–311.
  11. [11] W. Gueaieb, F. Karray, & S. Al-Sharhan, A robust hybrid in-telligent position/force control scheme for cooperative manip-ulators, IEEE/ASME Transactions on Mechatronics, 12(2),2007, 109–125.
  12. [12] D. Wang & N. McClamroch, Position and force control forconstrained manipulator motion: Lyapunovs direct method,IEEE Transactions on Robotics and Automation, 9(3), 1993,308–313.
  13. [13] L. Whitcomb, S. Arimoto, T. Naniwa, & F. Ozaki, Experimentsin adaptive model-based force control, IEEE Control SystemsMagazine, 16(1), 1996, 49–57.
  14. [14] T. Stepien, L. Sweet, M. Good, & M. Tomizuka, Controlof tool/workpiece contact force with application to roboticdeburring, IEEE Journal of Robotics of Automation, 3(1),1987, 7–18.
  15. [15] Y. Xu, J. Hollerbach, & D. Ma, A nonlinear pd controllerfor force and contact transient control, IEEE Control SystemsMagazine, 15(1), 1995, 15–21.
  16. [16] R. Featherstone, Modeling and control of contact betweenconstrained rigid bodies, IEEE Transactions on Robotics andAutomation, 20(1), 2004, 82–92.
  17. [17] J. Roy & L. Whitcomb, Adaptive force control of posi-tion/velocity controlled robots: theory and experiment, IEEETransactions on Robotics and Automation, 18(2), 2002, 121–137.
  18. [18] A. Tornambe, Modeling and control of impact in mechanicalsystems: theory and experimental results, IEEE Transactionson Automatic Control, 44(2), 1999, 294–309.
  19. [19] B. Brogliato, Nonsmooth Impact Mechanics, (London, U.K.:Springer-Verlag, 1996).
  20. [20] P. Sekhavat, Q. Wu, & N. Sepehri, Impact control in hydraulicactuators with friction: theory and experiments, in Proc. ofIEEE American Controls Conference, 2004, 4432–4437.
  21. [21] Y. Wu, T.-J. Tarn, N. Xi, & A. Isidori, On robust impact controlvia positive acceleration feedback for robot manipulators, inProc. of IEEE Int. Conf. on Robotics and Automation, 1996,1891–1896.
  22. [22] B. Brogliato, S.-I. Niculescu, & P. Orhant, On the controlof finite-dimensional mechanical systems with unilateral con-straints, IEEE Transactions on Automatic Control, 42(2),1997, 200–215.
  23. [23] E. Lee, J. Park, K. Loparo, C. Schrader, & P. H. Chang,Bang-bang impact control using hybrid impedance/time-delaycontrol, IEEE/ASME Transactions on Mechatronics, 8(2),2003, 272–277.
  24. [24] D. Chiu & S. Lee, Robust jump impact controller for manip-ulators, in Proc. of IEEE/RSJ Int. Conf. on Human RobotInteraction and Cooperative Robots, 1995, 299–304.
  25. [25] P. R. Pagilla & B. Yu, A stable transition controller for con-strained robots, IEEE/ASME Transactions on Mechatronics,6(1), 2001, 65–74.
  26. [26] ——, An experimental study of planar impact of a robot ma-nipulator, IEEE/ASME Transactions on Mechatronics, 9(1),2004, 123–128.
  27. [27] L. Menini & A. Tornambe, Asymptotic tracking of periodictrajectories for a simple mechanical system subject to non-smooth impacts, IEEE Transactions on Automatic Control,46(7), 2001, 1122–1126.
  28. [28] H. Hertz, H. Hertz: Miscellaneous papers (Macmillan, 1896).
  29. [29] M. Indri & A. Tornambe, Impact model and control of twomulti-dof cooperating manipulators, IEEE Transactions onAutomatic Control, 44(6), 1999, 1297–1303.
  30. [30] A. Tornambe, Global regulation of a planar robot arm strikinga surface, IEEE Transactions on Automatic Control, 41, 1996,1517–1521.
  31. [31] S.P. DiMaio & S.E. Salcudean, Needle insertion modeling andsimulation, IEEE Transactions on Robotics and Automation,19(5), 2003, 864–875.
  32. [32] A.M. Okamura, C. Simone, & M.D. O’Leary, Force modelingfor needle insertion into soft tissue, IEEE Transactions onBiomedical Engineering, 51(10), 2004, 1707–1716.
  33. [33] M.P. Ottensmeyer & J.K. Salisbury, In vivo data acquisitioninstruments for solid organ mechanical property measurement,in International Conference on Med. Image Computing andComputer-Assisted Intervention, 2001, 975–982.
  34. [34] F.S. Azar, D.N. Metaxas, & M.D. Schnall, A finite elementmodel of the breast for predicting mechanical deformationsduring biopsy procedures, in Proc. of IEEE Work. on Mathe-matical Methods in Biomedical Image Analysis, 2000, 38–45.
  35. [35] Y.C. Fung, Biomechanics: mechanical properties of livingtissue, Second Edition. (New York: Springer-Verlag, 1993).
  36. [36] K. Dupree, C. Liang, G. Hu, & W.E. Dixon, Global adaptivelyapunov-based control of a robot and mass-spring systemundergoing an impact collision, in Proc. of IEEE Conf. onDecision and Control, 2006, 2039–2044.
  37. [37] G. Hu, W.E. Dixon, & C. Makkar, Energy-based nonlinearcontrol of underactuated euler-lagrange systems subject toimpacts, in Proc. of IEEE Conf. on Decision and Control,2005, 6859–6864, see also IEEE Transactions on AutomaticControl 2007.
  38. [38] M. Indri & A. Tornambe, Control of under-actuated mechanicalsystems subject to smooth impacts, in Proc. of IEEE Conf.on Decision and Control, 2004, 1228–1233.
  39. [39] F.L. Lewis, C.T. Abdallah, & D.M. Dawson, Control of robotmanipulators, J. Griffin (Ed), (Macmillian Publishing Com-pany, 1993).
  40. [40] M.W. Spong, S. Hutchinson, & M. Vidyasagar, Robot modelingand control. (Wiley, 2006).
  41. [41] M. Krstic, P.V. Kokotovic, & I. Kanellakopoulos, Nonlinearand adaptive control design. (NY, USA: John Wiley & Sons,Inc., 1995).
  42. [42] M.S. Loffler, N.P. Costescu, & D.M. Dawson, Qmotor 3.0 andthe Qmotor robotic toolkit: a pc-based control platform, IEEEControl System Magazine, 22(3), 2002, 12–26.

Important Links:

Go Back