J. Wang,∗ Z. Qu,∗∗ Y. Guo,∗∗∗ and J. Yang∗∗∗∗
[1] E. Rimon & D.E. Koditschek. Exact robot navigation usingartificial potential functions, IEEE Transactions on Roboticsand Automation, 8, 1992, 501–518. [2] J. Borenstein & Y. Koren. The vector field histogram — fastFigure 7. Steering controls: u1(t) — solid line and u2(t)— dashed line.obstacle avoidance for mobile robots, IEEE Transactions onRobotics and Automation, 7, 1991, 278–288. [3] R. Murphy, Introduction to AI Robotics, (Cambridge, USA:MIT Press, 2000). [4] J.P. Laumond. Robot Motion Planning and Control, (London:Springer-Verlag, 1998). [5] R.M. Murray, Z. Li, & S.S. Sastry. A Mathematical Introductionto Robotic Manipulation, (Boca Raton, USA: CRC Press, Inc.,1994). [6] H.J. Sussmann & W. Liu. Limits of highly oscillatory controlsand the approximation of general paths by admissible trajec-tories, Technical Report SYSCON-91-02, Rutgers Center forSystems and Control, Piscataway, New Jersey, USA, 1991. [7] M. Fliess, J. Levine, Ph. Martin, & P. Rouchon, Flatness anddefect of nonlinear systems: Introductory theory and examples,International Journal of Control, 61, 1995, 1327–1361. [8] R.M. Murray & S.S. Sastry. Nonholonomic motion planning:Steering using sinusoids, IEEE Transactions on AutomaticControl, 38, 1993, 700–716. [9] S. Monaco & D. Normand-Cyrot. An introduction to motionplanning under multirate digital control, Proc. 31st Conf. onDecision and Control, Tucson, Arizona, 1992, 1780–1785. [10] D. Tilbury, R.M. Murray, & S.S. Sastry, Trajectory generationfor the n-trailer problem using goursat normal form, IEEETransactions on Automatic Control, 40, 1995, 802–819. [11] C. Fernandes, L. Gurvits, & Z. Li, Near-optimal nonholonomicmotion planning for a system of coupled rigid bodies, IEEETransactions on Automatic Control, 39, 1994, 450–463. [12] S. Sundar & Z. Shiller, Optimal obstacle avoidance based onthe hamilton-jacobi-bellman equation, IEEE Transactions onRobotics and Automation, 13, 1997, 305–310. [13] J.P. Laumond, P.E. Jacobs, M. Taix, & R.M. Murray. A motionplanner for nonholonomic mobile robots. IEEE Transactionson Robotics and Automation, 10, 1994, 577–593. [14] J. Barraquand & J.C. Latombe, Nonholonomic multibodymobile robots: controllability and motion planning in thepresence of obstacles, Proc. 1991 IEEE International Conf. onRobotics and Automation, Sacramento, USA, 1991, 2328–2335. [15] Z. Qu, J. Wang, & C.E. Plaisted. A new analytical solution tomobile robot trajectory generation in the presence of movingobstacles, IEEE Transactions on Robotics, 20, 2004, 978–993. [16] J. Yang, A. Daoui, Z. Qu, J. Wang, & R.A. Hull, An optimaland real-time solution to parameterized mobile robot trajec-tories in the presence of moving obstacles, Proc. 2005 IEEEInternational Conf. on Robotics and Automation, Barcelona,Spain, 2005, 4423–4428.290
Important Links:
Go Back