A REDUCED-ORDER ANALYTICAL SOLUTION TO MOBILE ROBOT TRAJECTORY GENERATION IN THE PRESENCE OF MOVING OBSTACLES

J. Wang,∗ Z. Qu,∗∗ Y. Guo,∗∗∗ and J. Yang∗∗∗∗

References

  1. [1] E. Rimon & D.E. Koditschek. Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, 8, 1992, 501–518.
  2. [2] J. Borenstein & Y. Koren. The vector field histogram — fast Figure 7. Steering controls: u1(t) — solid line and u2(t) — dashed line. obstacle avoidance for mobile robots, IEEE Transactions on Robotics and Automation, 7, 1991, 278–288.
  3. [3] R. Murphy, Introduction to AI Robotics, (Cambridge, USA: MIT Press, 2000).
  4. [4] J.P. Laumond. Robot Motion Planning and Control, (London: Springer-Verlag, 1998).
  5. [5] R.M. Murray, Z. Li, & S.S. Sastry. A Mathematical Introduction to Robotic Manipulation, (Boca Raton, USA: CRC Press, Inc., 1994).
  6. [6] H.J. Sussmann & W. Liu. Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories, Technical Report SYSCON-91-02, Rutgers Center for Systems and Control, Piscataway, New Jersey, USA, 1991.
  7. [7] M. Fliess, J. Levine, Ph. Martin, & P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and examples, International Journal of Control, 61, 1995, 1327–1361.
  8. [8] R.M. Murray & S.S. Sastry. Nonholonomic motion planning: Steering using sinusoids, IEEE Transactions on Automatic Control, 38, 1993, 700–716.
  9. [9] S. Monaco & D. Normand-Cyrot. An introduction to motion planning under multirate digital control, Proc. 31st Conf. on Decision and Control, Tucson, Arizona, 1992, 1780–1785.
  10. [10] D. Tilbury, R.M. Murray, & S.S. Sastry, Trajectory generation for the n-trailer problem using goursat normal form, IEEE Transactions on Automatic Control, 40, 1995, 802–819.
  11. [11] C. Fernandes, L. Gurvits, & Z. Li, Near-optimal nonholonomic motion planning for a system of coupled rigid bodies, IEEE Transactions on Automatic Control, 39, 1994, 450–463.
  12. [12] S. Sundar & Z. Shiller, Optimal obstacle avoidance based on the hamilton-jacobi-bellman equation, IEEE Transactions on Robotics and Automation, 13, 1997, 305–310.
  13. [13] J.P. Laumond, P.E. Jacobs, M. Taix, & R.M. Murray. A motion planner for nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, 10, 1994, 577–593.
  14. [14] J. Barraquand & J.C. Latombe, Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles, Proc. 1991 IEEE International Conf. on Robotics and Automation, Sacramento, USA, 1991, 2328–2335.
  15. [15] Z. Qu, J. Wang, & C.E. Plaisted. A new analytical solution to mobile robot trajectory generation in the presence of moving obstacles, IEEE Transactions on Robotics, 20, 2004, 978–993.
  16. [16] J. Yang, A. Daoui, Z. Qu, J. Wang, & R.A. Hull, An optimal and real-time solution to parameterized mobile robot trajectories in the presence of moving obstacles, Proc. 2005 IEEE International Conf. on Robotics and Automation, Barcelona, Spain, 2005, 4423–4428. 290

Important Links:

Go Back