INTERNAL REPRESENTATION OF THE ENVIRONMENT IN COGNITIVE ROBOTICS

C. Angulo,∗ R. A. T´llez,∗ and D. E. Pardo∗ e

References

  1. [1] D. Cliff, Biologically inspired computing approaches to cognitive systems: A partial tour of the literature, Technical Report HPL-2003-011, HP Labs, 2003.
  2. [2] J. Fodor, The language of thought (Cambridge, MA: The MIT Press, 1975).
  3. [3] H.A. Simon, The sciences of the artificial (Cambridge, MA: The MIT Press, 1996).
  4. [4] D. Parisi, Internal robotics, Connection Science, 16 (4), 2004, 325–338.
  5. [5] R. Brooks & S. Iyengar, Multi-sensor fusion: fundamentals and applications with software (Upper Saddle River, NJ: PrenticeHall PTR, 1998).
  6. [6] B. Smith, The ecological approach to information processing, in K. Nyiri (Ed.), Mobile communication: Essays on philosophy, psychology, and education (Vienna: Passagen Verlag, 2003), 17–24.
  7. [7] J.J. Gibson, The ecological approach to visual perception (Hillsdale, NJ: Lawrence Erlbaum Associates, 1979).
  8. [8] R. Shaw & K. Shockley, An ecological science of the artificial? Journal of the Learning Sciences, 12 (3), 2003, 427–435.
  9. [9] T. van Gelder, Dynamic approaches to cognition, in R. Wilson and F. Keil (Eds), The MIT encyclopedia of cognitive sciences (Cambridge, MA: The MIT Press, 1999), 244–246.
  10. [10] T. Ziemke, Cybernetics and embodied cognition: On the construction of realities in organisms and robots, Kybernetes, 34 (1/2), 2005, 118–128.
  11. [11] S. Cheng & P.N. Sabes, Modeling sensorimotor learning with linear dynamical systems, Neural Computation, 18 (4), 2006, 760–793.
  12. [12] X. Barandiaran & A. Moreno, On what makes certain dynamical systems cognitive: A minimally cognitive organization program, Adaptive Behavior, 14 (2), 2006, 171–185.
  13. [13] R. Calabretta, S. Nolfi, D. Parisi, & G. Wagner, A case study of the evolution of modularity: Towards a bridge between evolutionary biology, artificial life, neuro and cognitive science, Proc. 6th Int. Conf. on Artificial Life, Madison, WI, 1998, 275–284.
  14. [14] S. Nolfi & D. Floreano, Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines (Cambridge, MA: The MIT Press, 2000).
  15. [15] X. Barandiaran & E.D. Paolo, Artificial mental life, Proc. 11th Int. Conf. on Artificial Life, Winchester, UK, 2008, 747.
  16. [16] S. Nolfi, Evolutionary robotics: Looking forward, Connection Science, 16 (4), 2004, 223–225.
  17. [17] A. Montebelli, C. Herrera, & T. Ziemke, On cognition as dynamical coupling: An analysis of behavioral attractor dynamics, Adaptive Behavior, 16 (2–3), 2008, 182–195.
  18. [18] H. von Foerster, Thoughts and notes on cognition, in P. Garvin (Ed.), Cognition: A multiple view (New York, NY: Spartan Books, 1970), 25–48.
  19. [19] R. Jacobs, M. Jordan, S. Nowlan, & G.E. Hinton, Adaptative mixture of local experts, Neural Computation, 1 (3), 1991, 79–87.
  20. [20] G. Auda & M. Kamel, CMNN: Cooperative Modular neural Networks for pattern recognition, Pattern Recognition Letters, 18 (11–13), 1997, 1391–1398.
  21. [21] K. Chen & H. Chi, A modular neural network architecture for pattern classification based on different feature sets, International Journal of Neural Systems, 9 (6), 1999, 563–581.
  22. [22] J. Tani & S. Nolfi, Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems, Neural Networks, 12(7–8), 1999, 1131–1141.
  23. [23] R.W. Paine & J. Tani, How hierarchical control self-organizes in artificial adaptive systems, Adaptive Behavior, 13 (3), 2005, 211–225.
  24. [24] B. Lara, M. Hülse, & F. Pasemann, Evolving neuro-modules and their interfaces to control autonomous robots, Proc. 5th World Multi-conf. on Systems, Cybernetics and Informatics, Orlando, FL, 2001.
  25. [25] R.A. Téllez, C. Angulo, & D.E. Pardo, Evolving the walking behaviour of a 12 dof quadruped using a distributed neural architecture, Proc. of BioADIT, Osaka, Japan, 2006, 5–19.
  26. [26] F. Gomez & R. Miikkulainen, Incremental evolution of complex general behavior, Technical Report AI96-248, University of Texas, 1996.
  27. [27] F. Gomez & R. Miikkulainen, Solving non-markovian control tasks with neuroevolution, Proc. 16th Int. Joint Conf. on Artificial Intelligence, Stockholm, Sweden, 1999, 1356–1361.
  28. [28] B.C. Kuo & F. Golnaraghi, Automatic control systems (New York, NY: John Wiley & Sons, 2002).
  29. [29] K. Kalveram, T. Schinauer, S. Beirle, & P. Jansen-Osmann, Threading neural feedforward into a mechanical spring: How biology exploits physics in limb control, Biological Cybernetics, 92 (4), 2005, 229–240.
  30. [30] A. Isidori, L. Marconi, & A. Serrani, Robust autonomous guidance: An internal model approach (Secaucus, NJ: Springer Verlag New York, 2003).
  31. [31] T. Röfer, Evolutionary gait-optimization using a fitness function based on proprioception, Proc. RoboCup-2004: Robot Soccer World Cup VIII, Lisbon, Portugal, 2005, 310–322.
  32. [32] A.J. Ijspeert, A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander, Biological Cybernetics, 84 (5) , 2001, 331–348.
  33. [33] R. Beer, On the dynamics of small continuous-time recurrent neural networks, Adaptive Behavior, 3 (4), 1995, 469–509.
  34. [34] R. Téllez & C. Angulo, Webots simulator 5.1.7. cyberbotics ltd., Artificial Life, 13 (3), 2007, 313–318. 220

Important Links:

Go Back