C. Angulo,∗ R. A. T´llez,∗ and D. E. Pardo∗ e
[1] D. Cliff, Biologically inspired computing approaches to cogni-tive systems: A partial tour of the literature, Technical ReportHPL-2003-011, HP Labs, 2003. [2] J. Fodor, The language of thought (Cambridge, MA: The MITPress, 1975). [3] H.A. Simon, The sciences of the artificial (Cambridge, MA:The MIT Press, 1996). [4] D. Parisi, Internal robotics, Connection Science, 16 (4), 2004,325–338. [5] R. Brooks & S. Iyengar, Multi-sensor fusion: fundamentals andapplications with software (Upper Saddle River, NJ: Prentice-Hall PTR, 1998). [6] B. Smith, The ecological approach to information processing, inK. Nyiri (Ed.), Mobile communication: Essays on philosophy,psychology, and education (Vienna: Passagen Verlag, 2003),17–24. [7] J.J. Gibson, The ecological approach to visual perception (Hills-dale, NJ: Lawrence Erlbaum Associates, 1979). [8] R. Shaw & K. Shockley, An ecological science of the artificial?Journal of the Learning Sciences, 12 (3), 2003, 427–435. [9] T. van Gelder, Dynamic approaches to cognition, in R. Wilsonand F. Keil (Eds), The MIT encyclopedia of cognitive sciences(Cambridge, MA: The MIT Press, 1999), 244–246. [10] T. Ziemke, Cybernetics and embodied cognition: On theconstruction of realities in organisms and robots, Kybernetes,34 (1/2), 2005, 118–128. [11] S. Cheng & P.N. Sabes, Modeling sensorimotor learning withlinear dynamical systems, Neural Computation, 18 (4), 2006,760–793. [12] X. Barandiaran & A. Moreno, On what makes certain dy-namical systems cognitive: A minimally cognitive organizationprogram, Adaptive Behavior, 14 (2), 2006, 171–185. [13] R. Calabretta, S. Nolfi, D. Parisi, & G. Wagner, A case studyof the evolution of modularity: Towards a bridge betweenevolutionary biology, artificial life, neuro and cognitive science,Proc. 6th Int. Conf. on Artificial Life, Madison, WI, 1998,275–284. [14] S. Nolfi & D. Floreano, Evolutionary robotics: The biology,intelligence, and technology of self-organizing machines (Cam-bridge, MA: The MIT Press, 2000). [15] X. Barandiaran & E.D. Paolo, Artificial mental life, Proc. 11thInt. Conf. on Artificial Life, Winchester, UK, 2008, 747. [16] S. Nolfi, Evolutionary robotics: Looking forward, ConnectionScience, 16 (4), 2004, 223–225. [17] A. Montebelli, C. Herrera, & T. Ziemke, On cognition asdynamical coupling: An analysis of behavioral attractor dy-namics, Adaptive Behavior, 16 (2–3), 2008, 182–195. [18] H. von Foerster, Thoughts and notes on cognition, in P. Garvin(Ed.), Cognition: A multiple view (New York, NY: SpartanBooks, 1970), 25–48. [19] R. Jacobs, M. Jordan, S. Nowlan, & G.E. Hinton, Adaptativemixture of local experts, Neural Computation, 1 (3), 1991,79–87. [20] G. Auda & M. Kamel, CMNN: Cooperative Modular neuralNetworks for pattern recognition, Pattern Recognition Letters,18 (11–13), 1997, 1391–1398. [21] K. Chen & H. Chi, A modular neural network architecture forpattern classification based on different feature sets, Interna-tional Journal of Neural Systems, 9 (6), 1999, 563–581. [22] J. Tani & S. Nolfi, Learning to perceive the world as articulated:an approach for hierarchical learning in sensory-motor systems,Neural Networks, 12(7–8), 1999, 1131–1141. [23] R.W. Paine & J. Tani, How hierarchical control self-organizesin artificial adaptive systems, Adaptive Behavior, 13 (3), 2005,211–225. [24] B. Lara, M. H¨ulse, & F. Pasemann, Evolving neuro-modulesand their interfaces to control autonomous robots, Proc. 5thWorld Multi-conf. on Systems, Cybernetics and Informatics,Orlando, FL, 2001. [25] R.A. T´ellez, C. Angulo, & D.E. Pardo, Evolving the walkingbehaviour of a 12 dof quadruped using a distributed neuralarchitecture, Proc. of BioADIT, Osaka, Japan, 2006, 5–19. [26] F. Gomez & R. Miikkulainen, Incremental evolution of complexgeneral behavior, Technical Report AI96-248, University ofTexas, 1996. [27] F. Gomez & R. Miikkulainen, Solving non-markovian controltasks with neuroevolution, Proc. 16th Int. Joint Conf. onArtificial Intelligence, Stockholm, Sweden, 1999, 1356–1361. [28] B.C. Kuo & F. Golnaraghi, Automatic control systems (NewYork, NY: John Wiley & Sons, 2002). [29] K. Kalveram, T. Schinauer, S. Beirle, & P. Jansen-Osmann,Threading neural feedforward into a mechanical spring: Howbiology exploits physics in limb control, Biological Cybernetics,92 (4), 2005, 229–240. [30] A. Isidori, L. Marconi, & A. Serrani, Robust autonomousguidance: An internal model approach (Secaucus, NJ: SpringerVerlag New York, 2003). [31] T. R¨ofer, Evolutionary gait-optimization using a fitness func-tion based on proprioception, Proc. RoboCup-2004: RobotSoccer World Cup VIII, Lisbon, Portugal, 2005, 310–322. [32] A.J. Ijspeert, A connectionist central pattern generator forthe aquatic and terrestrial gaits of a simulated salamander,Biological Cybernetics, 84 (5) , 2001, 331–348. [33] R. Beer, On the dynamics of small continuous-time recurrentneural networks, Adaptive Behavior, 3 (4), 1995, 469–509. [34] R. T´ellez & C. Angulo, Webots simulator 5.1.7. cyberboticsltd., Artificial Life, 13 (3), 2007, 313–318.220
Important Links:
Go Back