STEREO-BASED RECONSTRUCTION UNCERTAINTY AND EGO-MOTION ESTIMATION

Y. Du,∗,∗∗ J. Sun,∗,∗∗ J. Han,∗ and Y. Tang∗

References

  1. [1] D.M. Helmick, Y. Cheng, S.I. Roumeliotis, D. Clouse, & L. Matthies, Path following using visual odometry for a Mars rover in high-slip environments, Proc. IEEE Aerospace Conference, Big Sky, MT, 2004, 1–17.
  2. [2] C.F. Olson, L.H. Matthies, M. Schoppers, & M.W. Maimone, Rover navigation using stereo ego-motion, Robotics and Autonomous Systems, 43, 2003, 215–229.
  3. [3] Z.W. Zhu, T. Oskiper, O. Naroditsky, S. Samarasekera, H.S. Sawhney, & R. Kumar, An improved stereo-based visual odometry system, Proc. Performance Metrics for Intelligent Systems, Gaithersburg, MD, 2006, 149–156.
  4. [4] R.G. Garcia-Garcia, M.A. Sotelo, I. Parra, D. Fernandez, & M. Gavilan, 3D visual odometry for GPS navigation assistance, Proc. IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 2007, 444–449.
  5. [5] A.I. Comport, E. Malis, & P. Rives, Accurate quadrifocal tracking for robust 3D visual odometry, Proc. IEEE International Conf. on Robotics and Automation, Roma, Italy, 2007, 40–45.
  6. [6] J. Kelly & G. Sukhatme, An experimental study of aerial stereo visual odometry, Proc. 6th IFAC Symposium on Intelligent Autonomous Vehicles, Toulouse, France, 2007.
  7. [7] B.B. Ready & C.N. Taylor, Improving accuracy of MAV pose estimation using visual odometry, Proc. American Control Conference, New York, 2007, 3721–3726.
  8. [8] K. Ni & F. Dellaert, Stereo tracking and three-point/one-point algorithms: A robust approach in visual odometry, Proc. IEEE International Conf. on Image Processing, Atlanta, GA, 2006, 2777–2780.
  9. [9] Y. Cheng & L. Matthies, Two years of visual odometry on the mars exploration rovers, Journal of Field Robotics, 24, 2007, 169–186.
  10. [10] M. Lappe, H. Frenz, T. Buehrmann, & M. Kolesnik, Virtual odometry from visual flow, Proc. SPIE/IS&T Conf. on Human Vision and Electronic Imaging X., San Jose, CA, 2005, 493– 502.
  11. [11] A. Hagnelius, Visual odometry, Master Thesis, Umea University, UMEA, Sweden, 2005.
  12. [12] A. Levin & R. Szeliski, Visual odometry and map correlation, Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1, Washington, DC, 2004, 611–618.
  13. [13] B. Kwolek, Visual odometry based on Gabor filters and sparse bundle adjustment, Proc. IEEE International Conf. on Robotics and Automation, Roma, Italy, 2007, 3573–3578.
  14. [14] H. Wang, K. Yuan, W. Zou, & Q. Zhou, Visual odometry based on locally planar ground assumption, Proc. IEEE International Conf. on Information Acquisition, Hong Kong and Macau, China, 2005, 54–62.
  15. [15] D. Fernandez & A. Price, Visual odometry for an outdoor mobile robot, Proc. IEEE Conf. on Robotics, Automation and Mechatronics, Singapor, 2004, 816–821.
  16. [16] D. Nister, O. Naroditsky, & J. Bergen, Visual odometry for ground vehicle applications, Journal of Field Robotics, 23, 2006, 3–20.
  17. [17] R. Bunschoten & B. Krose, Visual odometry from an omnidirectional vision system, Proc. IEEE International Conf. on Robotics and Automation, Taipei, Taiwan, 2003, 579–583.
  18. [18] T. Oskiper, Z. Zhu, S. Samarasekera, & R. Kumar, Visual Odometry System Using Multiple Stereo Cameras and Inertial Measurement Unit, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, 2007, 1–8.
  19. [19] M. Nishigaki, Ego-motion estimation using fewer image feature points, Report, Maryland University, 2004, College Park, Maryland, USA.
  20. [20] M. Bjorkman & J.O. Eklundh, A real-time system for epipolar geometry and ego-motion estimation, Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Hilton Head, SC, 2000, 506–513.
  21. [21] A. Milella & R. Siegwart, Stereo-based ego-motion estimation using pixel tracking and iterative closest point, Proc. IEEE International Conf. on Computer Vision Systems, New York, 2006, 21–27.
  22. [22] H. Moravec, Obstacle avoidance and navigation in the real world by a seeing robot rover, Doctoral Dissertation, Stanford University, 1980, Palo Alto, California.
  23. [23] L. Matthies, Dynamic stereo vision, Doctoral Dissertation, Carnegie Mellon University, 1989, Pittsburgh, PA, USA.
  24. [24] H.P. Moravec, Technologies of towards automatic visual obstacle avoidance, Proc. 5th Int. Joint Conf. on Artificial Intellingence, Cambridge, MA, 1977, 584–594.
  25. [25] C. Harris & M. Stephens, A combined corner and edge detector, Proc. Alvey Vision Conference, Manchester, 1988, 147–151.
  26. [26] C. Schmid, R. Mohr, C. Bauckhage, & M. Inria, Comparing and evaluating interest points, Proc. 6th Int. Conf. on Computer Vision, Bombay, India, 1998, 230–235.

Important Links:

Go Back