A WAVELET-BASED METHOD FOR PROCESSING SIGNAL OF FOG IN STRAP-DOWN INERTIAL SYSTEMS

D. Han,∗ C. Xiong,∗ and H. Liu∗∗

References

  1. [1] S. Huang, N. Sarma, K. Killian, & J. Goodwin, Optical signal noise reduction for fiber optic gyroscopes, US Patent, Editor: US, 1990.
  2. [2] K.M. Killian, Pointing grade fiber optic gyroscope, Aerospace and Electronic Systems Magazine, IEEE, 1994, 9(7), 6–10.
  3. [3] Y.S. Song, S.Q. Zhou, & Z. Lu, Technical ways to improve the temperature stability of FOGs, sensors, systems, and next-generation satellites. Proceedings of SPIE, 4540, 2001, 420–423.
  4. [4] A.V. Golikov, Temperature errors of fiber optical gyroscopes: their minimization, coherent optics of ordered and random media. Proceedigns of SPIE, 4242, 2001, 182–186.
  5. [5] Y.N. Korkishko, V.A. Fedorov, & S.M. Kostritskii, Multifunctional integrated optical chip for fiber optical gyroscope fabricated by high-temperature proton exchange, Integrated Optical Devices: Fabrication and Testing. Proceedings of SPIE, 4944, 2003, 262–267.
  6. [6] M.C. Aigrain & D.E. Ehiers, Novel Kalman filtering method for the suppression of gyroscope noise effects in pointing and tracking systems, Optical Engineering, 34(10), 1995, 3016– 3030.
  7. [7] C.L. Fan, Z.H. Jin, W.F. Tian, & F. Qian, Temperature drift modelling of fibre optic gyroscopes based on a grey radial basis function neural network, Measurement Science and Technology, 15(1), 2004, 119–126.
  8. [8] A. Noureldin, I.H. Dave, H. Tabler, & M.P. Mintchev, New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems, Journal of Optical Engineering, 40(10), 2001, 2097–2106.
  9. [9] K. He, W. Ye, & Z. He, Signal model of noise in open-loop fiber-optic gyros, Optics Letters, 22(23), 1997, 1742–1744.
  10. [10] A. Noureldin, A. Osman, & E. Naser, A neuro-wavelet method for multi-sensor system integration for vehicular navigation, Measurement Science and Technology, 15 (2), 2004, 404–412.
  11. [11] E.S. Naser, S. Nassar, & A. Noureldin, Wavelet de-noising for IMU alignment, IEEE Aerospace and Electronic Systems Magazine, 19(10), 2004, 32–39.
  12. [12] A.M. Sabatini, A wavelet-based bootstrap method applied to inertial sensor stochastic error modelling using the Allan variance, Measurement Science and Technology, 17(11), 2006, 2980–2988.
  13. [13] S.G. Mallat, Multiresolution representation and wavelets, Doctoral Dissertation, Department of Electrical Engineering, University of Pennsylvania, 1988.
  14. [14] S.G. Mallat, A theory for multiresolution signal decomposition the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 1989, 674–693.
  15. [15] S.G. Mallat, Multifrequency channel decompositions of images and wavelet models, IEEE Transactions on Acoustic, Speech, and Signal Processing, 37(12), 1989, 2091–2110.
  16. [16] I. Daubechies, Ten Lectures on Wavelet (Pennsylvania : Society for Industrial and Applied Mathematics, 1992).
  17. [17] C.K. Chui, An Introduction to Wavelets (San Diego, CA, USA: Academic Press Limited, 1992).
  18. [18] D.L. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, 41(3), 1995, 613–621.
  19. [19] O. Rioul & M. Vetterli, Wavelets and signal processing, IEEE Transactions on Signal Processing, 8(4), 1991, 14–38.
  20. [20] A.N. Akansu, Wavelets and filter banks. A signal processing perspective, IEEE Circuits and Devices Magazine, 10(6), 1994, 14–18.
  21. [21] Z.E. Shi, G.W. Wei, D.J. Kouri, D.K. Hoffman, et al., Lagrange wavelets for signal processing, IEEE Transactions on Image Processing, 10(10), 2001, 1488–1508.
  22. [22] M.S. Crouse, R.D. Nowak, & R.G. Baraniuk, Wavelet-based statistical signal processing using hidden Markov models, IEEE Transactions on Signal Processing, 46(4), 1998, 886–902.
  23. [23] H.Z. Xu & D. Zhang, Wavelet-based data processing for distributed fiber optic sensors, Proc. 5th Int. Conf. on Machine Learning and Cybernetics, Dalian, 2006, 4040–4045.
  24. [24] L. Cavalier & M. Raimondo, On choosing wavelet resolution in image deblurring, Proc. of the Int. Conf. on Computer Graphics, Imaging and Visualization, Sydney, Australia, 2006.
  25. [25] P. Hall & G.P. Nason, On choosing a non-integer resolution level when using wavelet methods, Statistics and Probability Letters, 34(1), 1997, 5–11.
  26. [26] M.L. Hilton & R.T. Ogden, Data analytic wavelet threshold selection in 2-D signal denoising, IEEE Transactions on Signal Processing, 45(2), 1997, 496–500.
  27. [27] M. Han, Y.H. Liu, J.H. Xi, & W. Guo, Noise smoothing for nonlinear time series using wavelet soft threshold, IEEE Signal Processing Letters, 14(1), 2007, 62–65.
  28. [28] H. Yan, W. Cheng, G.M. He, G. Li, et al., Multiscale variational threshold SAR image denoising based on quad-tree Complex Wavelet Packets Transform, 2nd Workshop on Digital Media and its Application in Museum & Heritage, 2007, 57–62.
  29. [29] ISO, Reporting vehicle road surface irregularities, Technical Report, ISO, ISO/TC108/SC2/WG4 N57, 1982.
  30. [30] E. Esmailzadeh & H.D. Taghirad, State-feedback control for passenger ride dynamics, Transactions of the Canadian Society for Mechanical Engineering, 19, 1995, 495–508.
  31. [31] E. Esmailzadeh & H.D. Taghirad, Active vehicle suspensions with optimal state-feedback control, The International Journal of Modelling & Simulation, 18(3), 228–238.
  32. [32] G.P. Xu, W.F. Tian, Z.H. Jin, & L. Qian, Temperature drift modelling and compensation for a dynamically tuned gyroscope by combining WT and SVM method, Measurement Science and Technology, 18(5), 2007, 1425–1432.
  33. [33] Y.H. Xu, Computer simulation on stochastic road irregularities. Transactions of the Chinese Society of Agricultural Machinery, 38(1), 2007, 33–36(29). 192
  34. [34] XW-VG7200 Inertial Measurement Unit & Vertical Gyroscope User Manual. Beijing StareNeto Technology Development Co., Ltd.
  35. [35] Y.Y. Qin, Inertial Navigation (China: Science Press, 2006).

Important Links:

Go Back