OBTAINING OBSTACLE INFORMATION BY AN OMNIDIRECTIONAL STEREO VISION SYSTEM

L.C. Su,∗ C.J. Luo,∗∗ and F. Zhu∗∗

References

  1. [1] B.-S. Choi & J.-J. Lee, Localization of a mobile robot based on an ultrasonic sensor using dynamic obstacles, Artif Life Robotics, 12, 2008, 280–283.
  2. [2] E. Prassler & J. Scholz, Tracking multiple moving objects for real-time robot navigation. Autonomous Robots, 8(2), 2000, 105–116.
  3. [3] S. Kagami, K. Okada, M. Inaba, & H. Inoue, Design and implementation of onbody real-time depthmap generation system, Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 2000, 1441–1446.
  4. [4] R. Bunschoten & B. Krose, Robust scene reconstruction from an omnidirectional vision system, IEEE Transactions on Robotics and Automation, 19(2), 2003, 351–357.
  5. [5] E. Menegatti, T. Maedab, H. Ishiguroc et al., Image-based memory for robot navigation using properties of omnidirectional images. Robotics and Autonomous Systems, 47, 2004, 251–267.
  6. [6] Y. Yagi, Real-time omnidirectional imaging sensor for robot navigation, Proc. 2002 IEEE Int. Symposium on Intelligent Control. Vancouver, BC , Canada, 2002, 702–708.
  7. [7] S. Baker & S.K. Nayar, A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision, 35(2), 1999, 175–196.
  8. [8] H. Koyasu, J. Miura, & Y. Shirai, Recognizing moving obstacles for robot navigation using real-time omnidirectional stereo vision, Journal of Robotics and Mechatronics, 14(2), 2002, 147–156.
  9. [9] H. Koyasu, J. Miura, & Y. Shirai, Mobile robot navigation in dynamic environments using omnidirectional stereo, Proc. 2003 IEEE Int. Conf. on Robotics and Automation, Taipei, 2003, 893–898.
  10. [10] M.J. JIA Yunde, Omnidirectional vision based localization and path planning for mobile robots, Doctoral Dissertalim, Beijing Institute of Technology, 2003.
  11. [11] T. Matsuoka , M. Araoka, T. Hasegawa, A. Mohri, M. Yamamoto, T. Kiriki, et al., Localization and obstacles detection using omni-directional vertical stereo vision, Lecture Notes In Computer Science, 2377 RoboCup 2001: Robot Soccer World Cup V, Springer Berlin, Heidelberg, 429–434.
  12. [12] J. Gluckman & S.K. Nayar, Rectified catadioptric stereo sensors, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 2003, 224–236.
  13. [13] M.F.D. Southwell, A. Basu, & J. Reyda, Panoramic stereo, ICPR, 1996, 378–382.
  14. [14] T.L. Conroy & J.B. Moore, Resolution invariant surfaces for panoramic vision systems, IEEE ICCV, 1999, 392–397.
  15. [15] E.L.L. Cabral & J.C.D. Souza Junior & M.C. Hunold, Omnidirectional Stereo Vision with a Hiperbolic Double Lobed Mirror, IEEE ICPR, 2004, 1–4. 226
  16. [16] L. Su & F. Zhu, Design of a novel stereo vision navigation system for mobile robots, Proc. IEEE Conf. on Robotics and Biomimetics, 2005, 611–614.
  17. [17] C. Luo, L. Su, F. Zhu, & Z. Shi, A general method for omnidirectional stereo camera calibration based on neural network optimization1, Lecture Notes in Computer Science. 3972, 2006, 383–389
  18. [18] C. Geyer & K. Daniilidis, Paracatadiopric camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 2000, 687–695.
  19. [19] J. Banks & P. Corke, Quantitative evaluation of matching methods and validity measures for stereo vision, The International Journal of Robotics Research, 18(3), 2001, 512–532.

Important Links:

Go Back