GENERATING EFFECTIVE WHOLE-BODY MOTIONS OF A HUMAN-LIKE MECHANISM WITH EFFICIENT ZMP FORMULATION

J.H. Kim, Y. Xiang, R.M. Bhatt, J. Yang, H.-J. Chung, J.S. Arora, and K. Abdel-Malek

References

  1. [1] M. Vukobratovi´c & B. Borovac, Zero-moment point – thirty five years of its life, International Journal of Humanoid Robotics, 1 (1), 2004, 157–173.
  2. [2] A. Goswami, Postural stability of biped robots and the foot-rotation indicator (FRI) point, The International Journal of Robotics Research, 18 (6), 1999, 523–533.
  3. [3] M.B. Popovic, A. Goswami, & H. Herr, Ground reference points in legged locomotion: Definitions, biological trajectories and control implications, The International Journal of Robotics Research, 24 (12), 2005, 1013–1032.
  4. [4] P. Sardain & G. Bessonnet, Forces acting on a biped robot. Center of pressure-zero moment point, IEEE Transactions on Systems, Man, and Cybernetics Part A, 34(5), 2004, 630–637.
  5. [5] K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, & J. Yamaguchi, Integrated motion control for walking, jumping and running on a small bipedal entertainment robot, Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, 2004, 3189–3194.
  6. [6] Y. Xiang, H.J. Chung, A. Mathai, S. Rahmatalla, J.H. Kim, T. Marler, S. Beck, J. Yang, J. Arora, & K. Abdel-Malek Optimization-based dynamic human walking prediction, Proc. SAE Digital Human Modeling for Design and Engineering, Seattle, WA, 2007.
  7. [7] M. Hirose & K. Ogawa, Honda humanoid robots development, Philosophical Transactions of The Royal Society A, 365(1850), 2007, 11–19.
  8. [8] J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, & H. Inoue, Dynamically-stable motion planning for humanoid robots, Autonomous Robots, 12(1), 2002, 105–118.
  9. [9] K. Inoue, Y. Nishihama, T. Arai, & Y. Mae, Mobile manipulation of humanoid robots-Body and leg control for dual arm manipulation, Proc. IEEE Int. Conf. on Robotics and Automation, Washington, DC, 2002, 2259–2264.
  10. [10] Y. Nishihama, K. Inoue, T. Arai, & Y. Mae, Mobile manipulation of humanoid robots-control method for accurate manipulation, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, 2003, 1914–1919.
  11. [11] K. Harada & M. Kaneko, Whole body manipulation, Proc. IEEE Int. Conf. on Robotics, Intelligent Systems and Signal Processing, Changsha, China, 2003, 190–195.
  12. [12] M. Vukobratovi´c, V. Potkonjak, K. Babkovi´c, & B. Borovac, Simulation model of general human and humanoid motion, Multibody System Dynamics, 17 (1), 2007, 71–96.
  13. [13] J. Park, J. Haan, & F.C. Park, Convex optimization algorithms for active balancing of humanoid robots, IEEE Transactions on Robotics, 23 (4), 2007, 817–822.
  14. [14] K. Yamane & Y. Nakamura, Dynamics filter – concept and implementation of online motion Generator for human figures, IEEE Transactions on Robotics and Automation, 19 (3), 2003, 421–432.
  15. [15] T. Takubo, K. Inoue, & T. Arai, Pushing an object considering the hand reflect forces by humanoid robot in dynamic walking, Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, 2005, 1706–1711.
  16. [16] K. Harada, S. Kajita, K. Kaneko, & H. Hirukawa, Dynamics and balance of a humanoid robot during manipulation tasks, IEEE Transactions on Robotics, 22 (3), 2006, 568–575.
  17. [17] V.V. Beletskii & P.S. Chudinov, Parametric optimization in the problem of bipedal locomotion, Izv. An SSSR. Mekhanika Tverdogo Tela [Mechanics of Solids], 12(1), 1977, 25–35.
  18. [18] C. Chevallereau & Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot, Robotica, 19(5), 2001, 557–569.
  19. [19] J.E. Bobrow, B. Martin, G. Sohl, E.C. Wang, F.C. Park, & J. Kim, Optimal robot motions for physical criteria, Journal of Robotic Systems, 18 (12), 2001, 785–795.
  20. [20] J. Lo, G. Huang, & D. Metaxas, Human motion planning based on recursive dynamics and optimal control techniques, Multibody System Dynamics, 8 (4), 2002, 433–458.
  21. [21] J.H. Kim, K. Abdel-Malek, J. Yang, & T. Marler, Prediction and analysis of human motion dynamics performing various tasks, The International Journal of Human Factors Modeling and Simulation, 1 (1), 2006, 69–94.
  22. [22] J.H. Kim, J. Yang, & K. Abdel-Malek, Planning load-effective dynamic motions of highly articulated human model for generic tasks (to appear), Robotica 2009 (doi:10.1017/S0263574708005110).
  23. [23] J. Denavit & R.S. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices, Journal of Applied Mechanics, 22 (2), 1955, 215–221.
  24. [24] J.H. Kim, J. Yang, & K. Abdel-Malek, A novel formulation for determining joint constraint loads during optimal dynamic motion of redundant manipulators with DH representation, Multibody System Dynamics, 19 (4), 2008, 427–451.
  25. [25] J.M.A. Hollerbach, Recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity, IEEE Transactions on Systems, Man, and Cybernetics, 10 (4), 1980, 730–736.
  26. [26] R.W. Toogood, Efficient robot inverse and direct dynamics algorithms using micro-computer based symbolic generation, Proc. IEEE Int. Conf. Robotics and Automation, Scottsdale, AZ, 1989, 1827–1832.
  27. [27] A. Piazzi & A. Visioli, Global minimum-jerk trajectory planning of robot manipulators, IEEE Transactions on Industrial Electronics, 47 (1), 2000, 140–149.
  28. [28] A.D. Kuo, An optimal control model for analyzing human postural balance, IEEE Transactions on Biomedical Engineering, 42 (1), 1995, 87–101.
  29. [29] P. Gorce, Dynamic postural control method for biped in unknown environment, IEEE Transactions on Systems, Man and Cybernetics, Part A, 29(6), 1999, 616–626.
  30. [30] A.V. Alexandrov, A.A. Frolov, F.B. Horak, P. Carlson-Kuhta, & S. Park, Feedback equilibrium control during human standing, Biological Cybernetics, 93 (5), 2005, 309–322.

Important Links:

Go Back