REAL-TIME VISION-BASED VEHICLE DETECTION AND TRACKING ON A MOVING VEHICLE FOR NIGHTTIME DRIVER ASSISTANCE

Y.-L. Chen, B.-F. Wu, C.-T. Lin, C.-J. Fan, and C.-M. Hsieh

References

  1. [1] Z. Sun, G. Bebis, & R. Miller, On-road vehicle detection: A review, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 2006, 694–711.
  2. [2] I. Masaki (Ed.), Vision-based vehicle guidance (New York: Springer, 1992).
  3. [3] S. Gupte, O. Masoud, R.F.K. Martin, & N.P. Papanikolopoulos, Detection and classification of vehicles, IEEE Transactions on Intelligent Transportation Systems, 3, 2002, 37–47.
  4. [4] M. Maurer, R. Behringer, S. Furst, F. Thomarek, & E.D. Dickmanns, A compact vision system for road vehicle guidance, Proc. 13th Int’l Conf. Pattern Recognition, 3, 1996, 313–317.
  5. [5] M. Bertozzi & A. Broggi, Vision-based vehicle guidance, IEEE Computer, 30, 1997, 49–55.
  6. [6] A. Broggi, M. Bertozzi, A. Fascioli, & G. Conte, Automatic vehicle guidance: The experience of the ARGO autonomous vehicle (Singapore: World Scientific, 1999).
  7. [7] A. Broggi, M. Bertozzi, A. Fascioli, C.G.L. Bianco, & A. Piazzi, Visual perception of obstacles and vehicles for platooning, IEEE Transactions on Intelligent Transportation Systems, 1, 2000, 164–176.
  8. [8] S. Nedevschi, R. Danescu, D. Frentiu, T. Marita, F. Oniga, C. Pocol, R. Schmidt, & T. Graf, High accuracy stereo vision for far distance obstacle detection, Proc. IEEE Intelligent Vehicle Symp., 2004, 292–297.
  9. [9] U. Franke & S. Heinrich, A study on recognition of road lane and movement of vehicles using vision system, Proc. SICE Annual Conference, Japan, 2001, 38–41.
  10. [10] M. Betke, E. Haritaoglu, & L.S. Davis, Real-time multiple vehicle detection and tracking from a moving vehicle, Machine Vision Applications, 12, 2000, 69–83.
  11. [11] B.-F. Wu & C.T. Lin, A fuzzy vehicle detection based on contour size similarity, Proc. IEEE Intelligent Vehicle Symp., 2005, 496–501.
  12. [12] K. Huang, L. Wang, T. Tan, & S. Maybank, A real-time object detecting and tracking system for outdoor night surveillance, Pattern Recognition, 41, 2008, 432–444.
  13. [13] J.S. Stam, Headlamp control to prevent glare, U.S. Patent No. 6,861,809, 2005.
  14. [14] J.S. Stam, M.W. Pierce, & H.C. Ockerse, Image processing system to control vehicle headlamps or other vehicle equipment, U.S. Patent No. 6,868,322, 2005.
  15. [15] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on System, Man and Cybernetics, SMC-9, 1979, 62–66.
  16. [16] O.D. Trier & A.K. Jain, Goal-directed evaluation of binarization methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 1995, 1191–1201.
  17. [17] B.-F. Wu, Y.-L. Chen, & C.-C. Chiu, A discriminant analysis based recursive automatic thresholding approach for image segmentation, IEICE Transactions on Information and Systems, E88-D(7), 2005, 1716–1723.
  18. [18] K. Suzuki, I. Horiba, & N. Sugie, Linear-time connected component labeling based on sequential local operations, Computer Vision and Image Understanding, 89, 2003, 1–23.
  19. [19] G.P. Stein, O. Mano, & A. Shashua, Vision-based ACC with a single camera: bounds on range and range rate accuracy, Proc. IEEE Intelligent Vehicle Symp., 2003, 120–125.
  20. [20] P. Sneath & R. Sokal, Numerical taxonomy, The principle and practice of numerical classification (New York: W.H. Freeman: 1973).

Important Links:

Go Back