A PARALLEL ALGORITHM FOR SOLVING SAT PROBLEM BASED ON DNA COMPUTING

M. Darehmiraki

References

  1. [1] L. Adleman, Molecular computing of solution to combinatorial problems, Science, 266, 1994, 1021–1024.
  2. [2] L. Kari, DNA Computing-arrival of biological mathematics, The Mathematical Intelligence, 19 (2), 1997, 9–22.
  3. [3] L. Adleman, Computing with DNA, Scientific American, 279, 1998, 34–40.
  4. [4] M. Guo, W.-L. Chang, M. Ho, J. Lu, & J. Cao, Is optimal solution of every NP-complete or NP-had problem determined from its characteristic for DNA-based computing, Biosystems, 80 (1), 2005, 71–82.
  5. [5] M. Amos, G. P˜aun, G. Rozenberg, & A. Saloma, Topic inthe theory of DNA computing, Theoretical Computer Science,287, 2002, 3–38.
  6. [6] R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund, & L. Adleman, Solution of a 20-variable 3-SAT problem on a DNA computer, Science, 296, 2002, 499–502.
  7. [7] R.J. Lipton, DNA solution of hard computational problems, Science, 268, 1995, 542–545.
  8. [8] C.-N. Yang & C.B. Yang, A DNA solution of SAT problem by a modified sticker model, BioSystems, 81, 2005, 1–9.
  9. [9] C.H. Papadimitriou & K. Steiglitz, Combinatorial optimization algorithm and complexity (Idia, NJ: Prentice-Hall, 2003).
  10. [10] W.Y. Chung, P.C. Chih, & R.W. Kee, Molecular solution to the binary integer programming problem based DNA computing, BioSystems, 83, 2005, 56–66.

Important Links:

Go Back