A COMPARATIVE STUDY BETWEEN ´ BIHARMONIC BEZIER SURFACES AND BIHARMONIC EXTREMAL SURFACES

J. Monterde and H. Ugail

References

  1. [1] G. Farin & D. Hansford, The essentials of CAGD (Natick, MA, USA: AK Peters, Ltd., 2000).
  2. [2] M.I.G. Bloor & M.J. Wilson, An analytic pseudo-spectral method to generate a regular 4-sided PDE surface patch, Computer Aided Geometric Design, 22(3), 2005, 203–219.
  3. [3] R. Schneider & L. Kobbelt, Geometric fairing of irregular meshes for free-form surface design, Computer Aided Geometric Design, 18(4), 2001, 359–379.
  4. [4] R. Light & D. Gossard, Modification of geometric models through variational geometry, Computer Aided Design, 14(4), 1982, 209–214.
  5. [5] J. Monterde & H. Ugail, On harmonic and biharmonic B´ezier surfaces, Computer Aided Geometric Design, 21, 2004, 697–715.
  6. [6] J. Monterde, B´ezier surfaces of minimal area: the Dirichlet approach, Computer Aided Geometric Design, 21, 2004, 117–136.
  7. [7] H.P. Moreton & C.H. S´equin, Functional minimization for fair surface design, Computer Graphics, 26(2), 1992, 167–176.
  8. [8] G. Guy & G. Medioni, Inference of surfaces, 3D curves and junctions from sparse, noisy, 3D data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11), 1997, 1265–1277.
  9. [9] G. Medioni, M.S. Lee, & C.K. Tang, A computational framework for segmentation and grouping, (New York, NY, USA: Elsevier Science Ltd., 2000).
  10. [10] A. Adamson & M. Alexa, Ray tracing point set surfaces, in Proc. Shape Modelling International 2003, Seoul, Korea, 2003, 272–279.
  11. [11] N. Amenta & Y.J. Kil, Defining point-set surfaces, in Proc. ACM SIGGRAPH 2004, Los Angeles, California, USA: ACM Press, 2004, 264–270.

Important Links:

Go Back