FM 2: A REAL-TIME SENSOR-BASED FEEDBACK CONTROLLER FOR MOBILE ROBOTS

S. Garrido, L. Moreno, M. Abderrahim, and D. Blanco

References

  1. [1] A. Meystel, Planning in a hierarchical nested autonomous control system, 25th IEEE Conf. on Decision and Control, 1986, 1237–1249.
  2. [2] R. Brooks, A robust layered control system for a mobile robot, IEEE Transactions on Robotics and Automation, 2 (1), 1986, 14–23.
  3. [3] R. Alami, R. Chatila, S. Fleury, M. Ghallab, & F. Ingrand, An architecture for autonomy, International Journal of Robotics Research, 17 (4), 1998, 315–337.
  4. [4] R.C. Arkin, Integrating behavioral, perceptual and world knowledge in reactive navigation, Robotics and Autonomous Systems, 6, 1990, 105–122.
  5. [5] R.C. Arkin, Behaviour-based robotics (Cambridge MA: MIT Press, 1998).
  6. [6] R.P. Bonasso, D. Kortenkamp, D.P. Miller, & M. Slack, Experiences with an architecture for intelligent, reactive agents, Lecture Notes in Computer Science, 1037, 1996, 187–202.
  7. [7] R. Chatila, Deliberation and reactivity in autonomous mobile robot, Journal of Robotic Systems and Autonomous Systems, 16, 1995, 197–211.
  8. [8] K.H. Low, W.K. Leow, & M.H. Ang, A hybrid mobile robot architecture with integrated planning and control, Proc. of the 1st Int. Conf. on Autonomous Agents and Multiagent (AMAS’02), 2002, 219–226.
  9. [9] E. Dijkstra, A note on two problems in conexion with graphs, Numerische Mathematik, 1, 1959, 269–271. 64
  10. [10] S. Garrido, L. Moreno, M. Abderrahim, & F. Martin, Path planning for mobile robot navigation using Voronoi diagram and fast marching, Proc of IROS’06, Beijing, China, 2006, 2376–2381.
  11. [11] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, International Journal of Robotics Research, 5, 1986, 90–98.
  12. [12] E. Rimon & D.E. Koditschek, Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, 8 (5), 1992, 501–518.
  13. [13] D. Conner, A. Rizzi, & H. Choset, Composition of local potential functions for global robot control and navigation, Proc. of 2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2003) 4, 2003, 3546–3551.
  14. [14] S.R. Lindemann & S.M. LaValle, Smoothly blending vector fields for global robot navigation, Proc. of the 44th IEEE Conf. on Decision and Control, 2005, 3553–3559.
  15. [15] J.A. Sethian, Theory, algorithms, and applications of level set methods for propagating interfaces, Acta numerica, Cambridge University Press, 1996, 309–395.
  16. [16] S.M. LaValle, Planning algorithms (Cambridge, UK: Cambridge University Press, 2006).
  17. [17] S. Garrido, L. Moreno, & D. Blanco, Sensor-based global planning for mobile robot navigation, Robotica, 25 (2), 2007, 189–199.
  18. [18] J.-C. Latombe, Robot motion planning (Dordrecht, Netherlands: Kluwer Academic Publishers, 1991).
  19. [19] J.L. Davis, Wave propagation in solids and fluids (New York: Springer-Verlag, 1988).
  20. [20] J.A. Sethian, A fast marching level set method for monotonically advancing fronts, Proceedings of the National Academy of Sciences, 93 (4), 1996, 1591–1595.
  21. [21] L. Yatziv, A. Bartesaghi, & G. Sapiro, A fast O(n) implementation of the fast marching algorithm, Journal of Computational Physics, 212, 2005, 393–399.
  22. [22] J.A. Sethian, Level set methods (Cambridge, UK: Cambridge University Press, 1996).
  23. [23] J.N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Transactions on Automatic Control, 40, 1995, 1528–1538.
  24. [24] Y. Koren & J. Borenstein, Potential field methods and their inherent limitations for mobile robot navigation, Proc. IEEE Int. Conf. on Robotics and Automation, 1991, 1398–1404.
  25. [25] I. Ulrich & J. Borenstein, VFH∗: Local obstacle avoidance with look-ahead verification, Proc. IEEE Int. Conf. on Robotics and Automation, 2000, 2505–2511.
  26. [26] J. Minguez & L. Montano, Global nearness diagram navigation, Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, 2001, 33–39.
  27. [27] S. Fomel, A variational formulation of the fast marching eikonal solver, Tech. Report, 2000, 455–477, Stanford Exploration Project.
  28. [28] H.K. Zhao, A fast sweeping method for eikonal equations, Mathematics of Computation, 74 (250), 2005, 603–627.
  29. [29] S. Mauch, Efficient algorithms for solving static HamiltonJacobi equations, Doctoral Dissertation, California Institute of Technology, 2003.

Important Links:

Go Back