ROBUST 3D OBJECT REGISTRATION BASED ON PAIRWISE MATCHING OF GEOMETRIC DISTRIBUTIONS

N. Werghi

References

  1. [1] W.H. Tangelder & R.C. Veltkamp, A survey of content based 3D shape retrieval methods, Proc. Int. Conf. on Shape Modeling and Applications, Genova, Italy, 2004, 145–156.
  2. [2] E. Paquet et al., Description of shape information for 2-D and 3-D objects, Image Communication Journal, 16, 2000, 103–122.
  3. [3] E. Paquet & M. Rioux, Management of three-dimensional and anthropometric databases: Alexandria and Cleopatra, Journal of Electronic Imaging, 09(4), 2000, 421–431.
  4. [4] D.V. Vranic & D. Saupe, Description of 3D-shape using a complex function on the sphere, Proc. IEEE Int. Conf. onMultimedia and Expo, Lausanne, Switzerland, August, 2002,177–180.
  5. [5] C. Zhang & T. Chen, Efficient feature extraction for 2D/3D objects in mesh representation, Int. Conf. Image Processing, 3, 2001, 935–938.
  6. [6] J. Corney et al., Coarse filters for shape matching, IEEE Computer Graphics and Applications, 22(3), 2002, 65–74.
  7. [7] M. Kazhdan et al., Rotation invariant spherical harmonic representation of 3D shape descriptors, Proc. Symp. on Geometry Processing, Aachen, Germany, 2003, 156–164.
  8. [8] M. Kazhdan et al., A reflective symmetry descriptor for 3D models, Algorithmica, 3(1), 2003, 201–225.
  9. [9] A. Frome et al., Recognizing objects in range data using regional point descriptors, Proc. European Conf. on Computer Vision, Prague, Tchek, 2004, 224–237.
  10. [10] P.J. Besl & N.D. McKay, A method for registration of 3D shapes, IEEE Transactions Pattern Analysis and MachineIntelligence, 14(2), 1992, 239–256.
  11. [11] O. Faugeras & M. Hebert, A 3D recognition and positioning algorithm using geometric matching between primitive surfaces, Proc. 8th Int. Joint Conf. on Artificial Intelligence, 1983, 996–1002.
  12. [12] J. Thirion, New feature points based on geometric invariants for 3D image registration, International Journal of Computer Vision, 18(2), 1996, 121–137.
  13. [13] S.J. Chua & R. Jarvis, Point signatures: A new representation for 3D object Recognition, International Journal of Computer Vision, 25(1), 1997, 63–65.
  14. [14] A.E. Johnson & M. Hebert, Recognizing objects by matching oriented points, Proc. Computer Vision and Pattern Recognition, San Juan, Puerto Rico, USA, 1997, 684–689.
  15. [15] H. Hoppe et al., Surface reconstruction from unorganised points, Computer Graphics, 26(2), 1992, 71–78.
  16. [16] M. Garland & P.S. Heckbert, Surface simplification using quadric error metrics, SIGGRAPH97, Los Angeles, CA, USA, 1997, 209–216.
  17. [17] T. Jebara & R. Kondor, Bhattacharyya expected likelihood kernels, Conf. on Learning Theory, COLT 2003, 57–71.
  18. [18] K. Fukunaga, Introduction to statistical pattern recognition, Second Edition (New York: Academic Press, 1990).
  19. [19] D.A. Forsyth & J. Ponce, Computer vision: A modern approach, Chapter 21 (Upper Saddle River, NJ: Printice Hall, 2003).
  20. [20] R. Horaud & O. Monga, Vision par Ordinateur, outils fondamentaux, Chapter 6 (Paris: Hermes Edition, 1993).
  21. [21] R.M. Haralick, Propagating covariance in computer vision, Proc. Int. Conf. on Pattern Recognition, October, 01, 1994, 493–498.
  22. [22] Princeton Shape Benchmark, at Princeton Shape Retreival and Analysis Group, http://shape.cs.princeton.edu.
  23. [23] 3D CAFE, http://www.3dcafe.com/.

Important Links:

Go Back