BIOMECHANICAL CELL MODELLING UNDER IMPACT LOADING

N. Abolfathi,∗ G. Karami,∗ and M. Ziejewski∗

References

  1. [1] E.G. Peeters, C. Oomens, C. Bouten, D. Bader, & F. Baaijens,Mechanical and failure properties of single attached cells undercompression, Journal of Biomechanics, 38, 2005, 1685–1693.
  2. [2] R. Ellis, J.Yuan, & H. Horvitz, Mechanical and functional ofcell death, Annual Review of Cell Biology, 7, 1991, 663–698.
  3. [3] S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T.Lim, M. Beil, & T. Seufferlein, Connections between single-cell biomechanics and human disease states: Gastrointestinalcancer and malaria, Acta Biomaterialia, 1, 2005, 15–30.
  4. [4] J.G. McGarry, J. Klein-Nulend, M.G. Mullender, & P. J.Prendergast, A comparison of strain and fluid shear stressin stimulating bone cell responses – a computational andexperimental study, The FASEB Journal, 19, 2005, 482–484.
  5. [5] R. Breuls, B. Sengers, C. Oomens, C. Bouten, & F. Baaijens,Predicting local cell deformations in engineered tissue con-structs: A multilevel finite element approach, ASME Journalof Biomechanical Engineering, 124, 2002, 198–207.
  6. [6] C.T. Lim, E.H. Zhou, & S.T. Quek, Mechanical model forliving cell – a review, Journal of Biomechanics, 39, 2006,195–216.
  7. [7] A. Mark, F. Coughlin, & D. Stamenovic, A prestressed cablenetwork model of the adherent cell cytoskeleton, BiophysicalJournal, 84, 2003, 1328–1336.
  8. [8] C. Sultan, D. Stamenovic, & D.E. Ingber, A computationaltensegrity model predicts dynamic rheological behaviors inliving cells, Annals of Biomedical Engineering, 32 (4), 2004,520–530.
  9. [9] D. Stamenovic & D.E. Ingber, Models of cytoskeleton mechan-ics of adherent cells, Biomechanics and Modeling in Mechanobi-ology, 1, 2002, 95–108.
  10. [10] D. Ingber, Tensegrity. II. How structural networks influence cel-lular information processing networks, Journal of Cell Science,116 (8), 2003, 1397–1408.
  11. [11] D. Ingber, Opposing views on tensegrity as a structural frame-work for understanding cell mechanics, Journal of AppliedPhysiology, 89, 2000, 1663–1678.
  12. [12] D. Stamenovic, Z. Liang, J. Chen, & N. Wang, Effect of thecytoskeletal prestress on the mechanical impedance of culturedairway smooth muscle cells, Journal of Applied Physiology, 92,2002, 1443–1450.
  13. [13] D. Staminovic, S. Mijailovich, I. Norrelykke, J. Chen, & K.Wang, Cell prestress. II. Contribution of microtubules, Journalof Physiology-Cell Physiology, 282, 2002, 617–624.
  14. [14] D. Ingber, Tensegrity: The architectural basis of cellularmechanotransduction, Annual Review of Physiology, 59, 1997,575–599.
  15. [15] D. Staminovic & N. Wang, Cellular responses to mechani-cal stress engineering approaches to cytoskeletal mechanics,Journal of Applied Physiology, 89, 2000, 2085–2090.
  16. [16] N. Wang, I.M. Norrelykke, J. Srboljub, M. Mijailovich, J.Butler, J. Fredberg, & D. Staminovic, Cell prestress. I. Stiffnessand prestress are closely associated in adherent contractilecells, Journal of Cell Physiology, 282, 2002, 606–616.
  17. [17] Y. Shafrir & G. Forgacs, Mechanotransduction through thecytoskeleton, Journal of Physiology-Cell Physiology, 282, 2002,479–486.
  18. [18] E. Evans & A. Yeung, Apparent viscosity and cortical tensionof blood granulocytes determined by micropipette aspiration,Biophysics Journal, 56, 1989, 151–160.
  19. [19] E. Baesua, R.E. Ruddb, J. Belakb, & M. McElfreshc, Con-tinuum modeling of cell membranes, International Journal ofNon-Linear Mechanics, 39, 2004, 369–377.
  20. [20] J.P. Mills, L. Qie, M. Dao, C.T. Lim, & S. Suresh, Nonlinearelastic and viscoelastic deformation of the human red bloodcell with optical tweezers, Tech Science Press MCB, 1(3), 2004,169–180.
  21. [21] R.D. Kamm, A.K. Mc. Vittie, & M. Bathe, On the role ofcontinuum models in mechanobiology, ASME InternationalCongress-Mechanics in Biology, 2000, 242–248.
  22. [22] H. Karcher, J. Lammerding, H. Huang, R. Lee, R. Kamm, &M. Kaazempur-Mofrad, A three-dimensional viscoelastic modelfor cell deformation with experimental verification, BiophysicalJournal, 85, 2003, 3336–3349.
  23. [23] J.G. McGarry & P.J. Prendergast, A three-dimensional finiteelement model of an adherent eukaryotic cell, European Cellsand Materials, 7, 2004, 27–34.
  24. [24] B. Fabry, G. Maksym, J. Butler, M. Glogauer, D. Avajas, &J. Fredberg, Scaling the microrheology of living cells, PhysicalReview Letters, 87 (14), 2001, 1–4.
  25. [25] B. Fabry, G. Maksym, J. Butler, M. Glogauer, D. Navajas,& N. Taback, Time scale and other invariants of integrativemechanical behavior in living cells, Physical Review, 68, 2003,1–18.
  26. [26] G. Maksym, B. Fabry, J. Butler, & D. Navajas, Mechanicalproperties of cultured human airway smooth muscle cells from0.05 to 0.4 Hz, Journal of Applied Physiology, 89, 2000, 1619–1632.475
  27. [27] M. Sato, D.P. Theret, L.T. Wheeler, N. Ohshima, & R.M.Nerem, Application of the micropipette technique to the mea-surement of cultured porcine aortic endothelial cell viscoelas-tic properties, Journal of Biomechanical Engineering, 112 (3),1990, 263–268.
  28. [28] S. Mijaailovich, M. Kojic, M. Zikovic, B. Fabry, & J. Fredberg,A finite element model of cell deformation during magnetic beadtwisting, Journal of Applied Physiology, 93, 2002, 1429–1436.
  29. [29] P. Adasnwz, V. Laurentz, C. Oddouw, D. Isabeyzand, & S.Wendlingw, A cellular tensegrity model to analyze the struc-tural viscoelasticity of the cytoskeleton, Journal of TheoreticalBiology, 218, 2002, 155–173.
  30. [30] J. Ohayon, P. Tracqui, R. Fodil, S. Fereol, & V. Laurent,Analysis of nonlinear responses of adherent epithelial cellsprobed by magnetic bead twisting: A finite element modelbased on a homogenization approach, Journal of BiomechanicalEngineering, 126, 2004, 685–698.
  31. [31] Altair Engineering Company, Hyper Mesh Manuals, Version7.0, 2004.
  32. [32] Livermore Software Technology Cooperation, LS-DYNA UserManual, Version 970, 2004.
  33. [33] E.J. Koay, A.C. Shih, & K.A. Athanasiou, Creep indentationof single cells, Journal of Biomechanical Engineering, 125 (3),2003, 334–341.
  34. [34] H.H. Chen & G.W. Brodland, Cell-level finite element stud-ies of viscous cells in planar aggregates, ASME Journal ofBiomechanical Engineering, 122, 2000, 394–401.
  35. [35] F. Guilak & V.C. Mow, The mechanical environment of thechondrocyte: A biphasic finite element model of cell–matrixinteractions in articular cartilage, Journal of Biomechanics,33 (12), 2000, 1663–1673.
  36. [36] D. Shin & K. Athanasiou, Cyto-indentation for obtaining cellbiomechanical properties, Journal of Orthopedic Research, 17,1999, 880–890.
  37. [37] F. Gittes, B. Mickey, J. Nettleton, & H. Flexural, Rigidityof microtubules and actin filaments measured from thermalfluctuations in shape, Journal of Cell Biology, 120, 1993,923–934.
  38. [38] D. Ingber, Tensegrity. I. Cell structure and hierarchical systemsbiology, Journal of Cell Science, 116 (8), 2003, 1157–1173.

Important Links:

Go Back