DYNAMIC ANALYSIS OF MULTILAYERED MICROWAVE CIRCUITS INCLUDING METALLIZATION EFFECTS

M.L. Tounsi,∗ R. Touhami,∗ and M.C.E. Yagoub∗∗

References

  1. [1] A. Khodja, M.L. Tounsi, M.C.E. Yagoub, & R. Touhami,Full-wave mode analysis of coupling effect in microwave planartransmission lines, IASTED Int. Conf. on Antennas, Radar,and wave Propagation, Banff, AB, Canada, July 19–21, 2005,49–54.
  2. [2] M.L. Tounsi, A. Khodja, & M.C.E. Yagoub, Efficient analysisof multilayered broadside edge-coupled anisotropic structuresfor microwave applications, IEEE Int. Symp. on Circuits andSystems, Vancouver, BC, Canada, May 23–26, 2004, 229–232.
  3. [3] Z. Ma, E. Yamashita, & S. Xu, Hybrid-mode analysis ofplanar transmission lines with arbitrary metallization crosssections, IEEE Trans. Microwave Theory Tech., 41, March1993, 491–497.
  4. [4] R.A. Pucel, D.J. Mas, & C.P. Hartwig, Losses in microstrip,IEEE Transactions on Microwave Theory Technology, 16, June1968, 342–350.
  5. [5] W. Heinrich, Full-wave analysis of conductor losses on MMICtransmission lines, IEEE Transactions on Microwave TheoryTechnology, 38, October 1990, 1468–1472.
  6. [6] F.J. Schmuckle & R. Pregla, The method of lines for theanalysis of lossy planar waveguides, IEEE Transactions onMicrowave Theory Technology, 38, October 1990, 1473–1479.
  7. [7] J.H. Kim & D.H. Han, Hybrid method for frequency-dependentlossy coupled transmission line characterization and modeling,IEEE Electrical Performance of Electronic Packaging Meeting,Princeton, NJ, USA, October 27–29, 2003, 239–242.
  8. [8] C.L. Holloway, A discussion of losses and changes in the charac-teristic impedance of finitely-conducting planar transmission-line structures, IEEE Int. Symp. on Electromagnetic Com-patibility, Minneapolis, Minnesota, USA, August 19–23, 2002,743–747.
  9. [9] A.E. El-Hennawy, N.M. El-Minyawi, & T.A. Al-Saeed, Char-acteristics of shielded microstrip with finite conductivity andfinite strip thickness, 17th National Radio Science Conf., Min-ufiya, Egypt, February 22–24, 2000, B2/1–B2/4.
  10. [10] I.-P. Hong, S.-K. Park, & H.-K. Park, Quasi-static analysisof coupled microstrip lines with asymmetrical finite metal-lization thickness, IEEE Transactions on Microwave TheoryTechnology, 47, September 1999, 1739–1742.
  11. [11] L. Vietzorreck & W. Pascher, Modeling of conductor lossin coplanar circuit elements by the method of lines, IEEETransactions on Microwave Theory Technology, 45, December1997, 2474–2478.
  12. [12] L. Vietzorreck & W. Pascher, Influence of conductor lossand thickness in coplanar circuit elements, IEEE MTT-S Int.Microwave Symp. Digest, Denver, CO, USA, June 8–13, 1997,1811–1814.
  13. [13] H. Tzyy-Sheng, A generalized method for evaluating the met-allization thickness effects on microstrip structures, IEEE Mi-crowave Symp. Digest, May 23–27, 1994, 1009–1012.
  14. [14] M.S. Alam, K. Hirayama, Y. Hayashi, & M. Koshiba, Analysisof shielded microstrip lines with arbitrary metallization crosssection using a vector finite element method, IEEE Transac-tions on Microwave Theory Technology, 42, November 1994,2112–2117.
  15. [15] T. Itoh & R. Mittra, A technique for computing dispersioncharacteristics of shielded microstrip lines, IEEE Transactionson Microwave Theory Technology, 22, October 1974, 896–898.468
  16. [16] T. Itoh, Spectral domain immittance approach for dispersioncharacteristics of generalized printed transmission lines, IEEETransactions on Microwave Theory Technology, 28, July 1980,733–736.
  17. [17] M.L. Tounsi, R. Touhami, & M.C.E. Yagoub, Fullwave analysisof bilateral microwave structures on multilayered uniaxiallyanisotropic substrate, WSEAS Transactions on Electronics, 1,October 2004, 621–626.
  18. [18] M.L. Tounsi, R. Touhami, A. Khodja, & M.C.E. Yagoub,Analysis of the mixed coupling in bilateral microwave cir-cuits including anisotropy for MICs and MMICs applications,Progress in Electromagnetics Research, 62, 2006, 281–315.
  19. [19] A.I. Amora & H. Ghali, Full wave analysis of HTS supercon-ducting microstrip transmission lines using spectral-domainimmittance approach, National Radio Sciience Conf., Cairo,Egypt, March 19–21, 1996, 149–156.
  20. [20] J.M. Pond, C.M. Krowne, & W.L. Carter, On the applicationof the complex resistive boundary conditions to model trans-mission lines consisting of very thin superconductor, IEEETransactions on Microwave Theory Technology, 37, January1989, 181–190.
  21. [21] G. Gentili & G. Macchiarella, Quasi-static analysis of shieldedplanar transmission lines with finite metalization thickness bya mixed spectral-space domain method, IEEE Transactions onMicrowave Theory Technology, 42, February 1994, 249–255.
  22. [22] D.E. Cooper, Picosecond opto-electronique measurements ofmicrostrip dispersion, Applied Physics Letter, 47, 1985, 33–35.
  23. [23] S. Tedjini et al., Analysis of MMICs with finite strip thicknessand conductivity, Electronics Letter, 24(15), July 1988, 965–966.
  24. [24] H.J. Abiri, Analyse dynamique des lignes microniques par lam´ethode spectrale, Ph.D. Thesis, INP Grenoble, France, 1984.
  25. [25] J.Y. Ke & C.H. Chen, Modified spectral-domain approachfor microstrip lines with finite metallisation thickness andconductivity, IEE Proc. Microwave Antenna and Propagation,142(4), August 1995.

Important Links:

Go Back