A CUBIC SYSTOLIC ARRAY AND ITS PROPERTIES

M. Ishihara,∗ M. Tanaka,∗∗ and K. Kuriyama∗∗

References

  1. [1] J.A.B. Fortes & B.W. Wah, Systolic arrays – from conceptto implementation, IEEE Transactions on Computers, 20(7),1987, 12–17.
  2. [2] S.K. Pal & D. Zhang, Neural networks and systolic array design(World scientific publishing Co., Pte., Ltd., Singapore, 2002).
  3. [3] S.K. Rao & T. Kailath, Regular iterative algorithms and theirimplementation on processor arrays, Proceedings of the IEEE,76(3), 1988, 259–269.
  4. [4] T. Asai & T. Matsumoto, A systolic array RLS processor,IEICE Transactions, E84-B(5), 2001, 1356–1361.
  5. [5] H. Leung & S. Haykin, Stability of recursive QRD-LS al-gorithms suing finite-precision systolic array implementation,IEEE Transactions on Acoustic, Speech and Signal Processing,37 (5), 1989, 760–763.
  6. [6] S. Peng, I. Sedukhin, & S. Sedukhin, Design of array processorsfor 2-D discrete fourier transform, IEICE Transaction, E80-D(4), 1997, 455–465.
  7. [7] J. Choi & V. Boriakoff, A new linear systolic array for FFTcomputation, IEEE Trans. Circuits & Syst., 39(4), 1992, 236–239.
  8. [8] H.V. Jagadish, S.K. Rao, & T. Kailath, Array architecturesfor iterative algorithms, Proceedings of the IEEE, 75(9), 1987,1304–1321.
  9. [9] R.M. Owens & M.J. Irwin, The arithmetic cube, IEEE Trans-actions on Computers, C-36 (11), 1987, 1342–1348.
  10. [10] S. Peng & S.G. Sedukhin, Design of optimal array proces-sors for two-step division-free Gaussian elimination, IEICETransactions, E82-D(12), 1999, 1503–1511.
  11. [11] C.-W. Liu & L.-L. Lin, Systolic implementations of modifiedgaussian eliminations for the decoding of reed-solomon codes,IEICE Transactions, E82-A(10), 1999, 2251–2258.
  12. [12] M. Kaneko & H. Miyauchi, A systematic design of faulttolerant systolic arrays based on triple modular redundancy intime-processor space, IEICE Transactions, E79-D(12), 1996,1676–1689.
  13. [13] R.W. Hartenstein, M. Herz, T. Hoffmann, & U. Nageldinger,Using the KressArray for reconfigurable computing, Proc.on Configurable Computing: Technology and Applications,Boston, 1998, pp. 150–161.
  14. [14] G. Lu, H. Singh, M. Lee, N. Bagherzadeh, et al., The morphosysparallel reconfigurable system, Proc. of the 5th internationalEuro-Par Conference on Parallel Processing, Toulouse, France,1999, pp. 727–734.
  15. [15] M. Lee, H. Singh, G. Lu, N. Bagherzadeh, et al., Design andimplementation of the morphosys reconfigurable computingprocessor, Journal of VLSI and signal processing systems,24 (2-3), 2000, 147–164.
  16. [16] D. Schattschneider & M. Senechal, Tiling, in J.E. Goodman &J. O’Rounke (Eds.), Handbook of discrete and computationalgeometry (CRC Press, New York, 1997), pp. 43–50.
  17. [17] B. Gr¨unbaum & G.C. Shephard, Tilings and patterns (W.H.Freeman and Company, New York, 1987).
  18. [18] K. Culik II & J. Kari, An aperiodic set of wang cubes, Journalof Universal Computer Science, 1 (10), 1995, 675–686.

Important Links:

Go Back