MODELLING AND SIMULATION OF A HYBRID VEHICLE USING DIRECT TORQUE CONTROL OF INDUCTION MOTOR

M. Vasudevan,∗ R. Arumugam,∗ and S. Paramasivam∗

References

  1. [1] I.R. McNab, Pulsed power parameters, Institute for Advanced Technology Bulletin, 1, 1996, 7–10.
  2. [2] S. Fish, The Institute for Advanced Technology transitions electric combat vehicle modelling tools to DARPA contractors, Institute for Advanced Technology Bulletin, 1, 1996, 18.
  3. [3] K. Yamada, M. Hashiguchi, & M. Ito, Traction control system: Simulation analysis of the control system, International Journal of Vehicle Design, 12 (1), 1991, 89–96.
  4. [4] P.C. Krause, Analysis of electric machinery (McGraw-Hill, 1986).
  5. [5] I. Boldea & S.A. Nasar, Vector control of AC drives (CRC Press, 1992).
  6. [6] T.G. Habetler, F. Profumo, M. Pastorelli, & L.M. Tolbert, Direct torque control of induction machines using space vector modulation, IEEE Trans. on Industry Applications, 5 (28), 1992, 1045–1053.
  7. [7] J.–K. Kang, S.–K. Sul, New direct torque control of induction motor for minimum torque ripple and constant switching frequency, IEEE Trans. on Industry Applications, 35 (5), 1999, 231–1239.
  8. [8] F.L. Lewis & V.L. Syrmos, Optimal control (John Wiley & Sons, 1995).
  9. [9] G.S. Buja & P. Kazmierkowski, Direct torque control of PWM inverter-fed AC motors: A survey, IEEE Trans. on IE, 2 (51), 2004, 128–136.
  10. [10] P. Vas, Principles of direct torque control, in Sensorless vector and direct torque control (London: Oxford University Press, 1998), 124–253.
  11. [11] MATLAB: High-performance numeric computation and visualization software, The Math Works, Inc., Natrick, MA, 2000.

Important Links:

Go Back