SPLIT-STEP ALGORITHM BASED PROPAGATION MODELLING OF DARK SOLITON-LIKE PULSES

H. Apithy,∗ Y. Bouslimani,∗ and H. Hamam∗

References

  1. [1] A. Hasegawa & F. Tappert, Transmission of stationary nonlinear pulses in dielectric fibers, Part 1: Anomalous dispersion, Applied Physics Letters, 23, 1973, 142–144; Part 2: Normal dispersion, Applied Physics Letters, 23, 1973, 171–172. 72
  2. [2] V.E. Zakharov & A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-phase modulation of waves in nonlinear media, Soviet Journal of Experimental and Theoretical Physics (JETP), 34, 1972, 62–69.
  3. [3] Y. Kivshar & G.P. Agrawal, Optical solitons: From fibers to photonic crystals (San Diego, CA: Academic Press, 2003).
  4. [4] J.P. Gordon & H.A. Hauss, Random walk of coherently amplified solitons in optical fiber transmission, Optics Letters, 11 (10), 1986, 665–667.
  5. [5] H.A. Hauss, Quantum noise in soliton-like repeater systems, Journal of the Optical Society of America B, 8, 1991, 1122–1126.
  6. [6] Y.S. Kivshar & B. Luther-Davies, Dark optical solitons: Physics and applications, Physics Reports—Elsevier, 298, 1998, 81– 197.
  7. [7] Y.S. Kivshar & M. Haelterman, Gordon-Hauss effect on dark solitons, Optics Letters, 19 (1), 1994, 19–21.
  8. [8] G.P. Agrawal, Nonlinear fiber optics, 3rd ed. (San Diego, CA: Academic Press, 2001).
  9. [9] Y. Kodama & A. Hasegawa, Amplification and reshaping of optical solitons in glass fiber—II, Optics Letters, 7, 1982, 339–341.
  10. [10] M.W. Reinsch, A simple expression for the terms in the BakerCampbell-Hausdorff series, Journal of Mathematical Physics, 41, 2000, 2434–2442.
  11. [11] G.H. Weiss & A.A. Maradudin, The Baker-Hausdorff formula and a problem in crystal physics, Journal of Mathematical Physics, 3, 1962, 771–777.
  12. [12] R.H. Hardin & F.D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, Society for Industrial and Applied Mathematics Review, 15, 1973, 423.
  13. [13] T. Hohage & F. Schmidt, On the numerical solution of nonlinear Schrödinger type equations in fiber optics, Zuse Institute Berlin Report, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 02–04, 2002, 1–24.
  14. [14] J. Lee & B. Fornberg: A split-step approach for the 3-D Maxwell’s equations, Journal of Computational and Applied Mathematics, 158, 2003, 485–505.
  15. [15] M. Plura, J. Kissing, M. Gunkel, J. Lenge, J.-P. Elbers, C. Glingener, D. Schulz & E. Voges, Improved split-step method for efficient fibre simulations, IEE Electronics Letters, 37 (5), 2001, 286–287.
  16. [16] O. Sinkin, R. Holzlohner, J. Zweck, & C. Menyuk, Optimization of the split-step Fourier method in modeling optical-fiber communications systems, Journal of Lightwave Technology, 21 (1), 2003, 61–68.
  17. [17] C.J. Rasmussen, Simple and fast method for step size determination in computations of signal propagation through nonlinear fibers, Optical Fiber Communication Conference, Volume 3, Anaheim, CA, 2001, paper WDD29-1.

Important Links:

Go Back