MODELLING AND SIMULATION OF ADAPTIVE DIGITAL AC BRIDGE FOR IMPEDANCE MEASUREMENTS

S. Edward Ra jan,∗ P.S. Kannan,∗∗ K. Muneeswaran,∗∗∗ and T. Revathi∗∗∗

References

  1. [1] H. Bachmair & R. Vollmert, Comparison of admittance bymeans of a digital double-sine wave generator, IEEE Trans. onInstrumentation and Measurements, IM-29, 1980, 370–372.
  2. [2] W. Helbech, P. Marczinowski, & G. Trenker, High precisionautomatic digital AC bridge, IEEE Trans. on Instrumentationand Measurements, IM-32, 1983, 159–162.
  3. [3] M. Dutta, A. Rakshid, & S.N. Battacharyya, Novel AC bridgemethod employing LMS adaptive algorithm, Journal of Insti-tution of Engineers (India) ET, 67, 1986, 1–4.
  4. [4] M. Dutta, A. Rakshit, S.N. Bhattaccharyya, & J.K. Choudhury,An application of the LMS adaptive algorithm for a digital ACbridge, IEEE Trans. on Instrumentation and Measurements,IM-36, 1987, 894–899.
  5. [5] W. Helbach & H. Schollmeyer, Impedance measuring methodbased on multiple digital generators, IEEE Trans. on Instru-mentation and Measurements, IM-36, 1987, 400–405.
  6. [6] M. Schanenberger & S. Award, The implementation of adigital sine wave oscillator using TMS 320C25: Distortionreduction and applications, IEEE Trans. on Instrumentationand Measurements, 39, 1990, 870–873.
  7. [7] D. Tarach & G. Trenkler, High-accuracy n-port impedancemeasurement by means of modular digital AC compensator,IEEE Trans. on Instrumentation and Measurements, 42, 1993,622–626.
  8. [8] S.S. Award, N. Narasimhamurthi, & W.H. Ward, Analysis, de-sign and implementation of AC bridge for impedance measure-ments, IEEE Trans. on Instrumentation and Measurements,43 (6), 1994, 894–899.
  9. [9] K.L. Butler, M. Ehsani, & P. Kamath, Matlab based modellingand simulation package for electric and hybrid electric vehicledesign, IEEE Trans. on Vehicular Technology, 48 (6), 1999,1770–1777.
  10. [10] B.F. Romanowicz, Methodology for the modelling and simula-tion of microsystems (Dordrecht, Netherland: Kluwer, 1998).
  11. [11] A.M. Law & W.D. Kelton, Simulation modelling and analysis(Europe: McGraw Hill, 2000).AppendixTheoretical calculation of reactance:Error voltage (e) is given bye =VxZrZx+Zr −VrZxZx+Zr22For RC network:Reference impedance Zr = RUnknown impedance Zx =1sCZr(Zx + Zr)=R(1/sC + Rt)=sCR(sCR + 1)=s(s + 1/RC)Similarly:Zx(Zx + Zr)=1/sC(1/sC + R)=1sCR + 1=1RC/(s + 1/RC)For example:Rr = 1KΩ, C = 10 µFTherefore:Zr(Zx + Zr)=s(s + 100)Zx(Zx + Zr)=100(s + 100)Calculated value of capacitive reactance Xx:Xx = −1ωc=−12π f c=−12× π × 50 × 0.00001Xx = −318.3098 Ω.

Important Links:

Go Back