MODELLING OF THE PERFORMANCE OF PEMFC BASED ON FUZZY IDENTIFICATION

Q.L. Shao,∗ G.Y. Cao,∗∗ and X.J. Zhu∗∗

References

  1. [1] D.M. Bernardi & M.W. Verbrugge, A mathematical model for the solid polymer electrolyte fuel cell, Journal of the Electrochemical Society, 139, 1992, 2477–2491.
  2. [2] T.E. Springer, T.A. Zawodzinski, & S. Gottesfeld, Polymer electrolyte fuel cell model, Journal of the Electrochemical Society, 138, 1991, 2334–2342.
  3. [3] N. Djilali & D.M. Lu, Influence of heat transfer on gas and water transport in fuel cells, International Journal of Thermal Sciences, 41, 2002, 29–40.
  4. [4] J.S. Yi & T.V. Nguyen, Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors, Journal of the Electrochemical Society, 146, 1999, 38–45.
  5. [5] V. Gurau, H.T. Liu, & S. Kakac, Two-dimensional model for proton exchange membrane fuel cells, AIChE Journal, 44, 1998, 2410–2422.
  6. [6] T. Berning, D.M. Lu, & N. Djilali, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell, Journal of Power Sources, 106, 2002, 284–294.
  7. [7] S. Dutta, S. Shimpalee, & J.W. Van Zee, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, International Journal of Heat and Mass Transfer, 44, 2001, 2029–2042.
  8. [8] L. Pisani, G. Murgia, M. Valentini, & B.D. Aguanno, A work model of polymer electrolyte fuel cells, Journal of the Electrochemical Society, 149(7), 1995, 2670–2674.
  9. [9] J. Kim, S.M. Lee, & S. Srinivason, Modeling of exchange membrane fuel cell performance with an empirical equation, Journal of the Electrochemical Society, 142, 1995, 2670–2674.
  10. [10] J.C. Amphlett, R.M. Baumert, R.F. Mann, et al., Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell II: Empirical model development, Journal of the Electrochemical Society, 142, 1995, 9–15.
  11. [11] J.J. Baschuk & X.G. Li, Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, Journal of Power Sources, 86, 2000, 181–196.
  12. [12] L. Pisani, G. Murgia, M. Valentini, et al., A new semi-empirical approach to performance curves of polymer electrolyte fuel cells, Journal of Power Sources, 108, 2002, 192–203.
  13. [13] J.H. Lee, T.R. Lalk, & A.J. Appleb, Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks, Journal of Power Sources, 70, 1988, 258–268.
  14. [14] C. Deryn & R.H. Jiang, Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks, Part 1: Evaluation and simulation of an air-breathing PEMFC stack, Journal of Power Sources, 83, 1999, 128–133.
  15. [15] T. Takagi & M. Sugeno, Fuzzy identification of system and its applications to modeling and control, IEEE Trans. on Systems, Man, and Cybernetics, 15 (1), 1985, 16–32.
  16. [16] J. Buckley & M. Sugeno, Type controllers are universal controllers, Fuzzy Sets and Systems, 53 (3), 1993, 299–303.
  17. [17] H.W. Wang, G.F. Ma, & Z.C. Wang, A fuzzy identification method via fuzzy rules, Journal of System Simulation, 10 (4), 1998, 61–64 (in Chinese).
  18. [18] J.C. Bezdek, R.J. Hathaway, M.J. Sabin, & W.T. Tucker, in J.C. Bezdek & S.K. Pal (Eds.), Fuzzy Methods for Pattern Recognition (New York: IEEE Press, 1992).
  19. [19] J.-J. Hwang, K.-H. Lo, et al., Fuel cell dynamics and transport phenomena in a PEMFC, 25th Conf. on Theoretical and Applied Mechanics, Taichung, Taiwan, R.O.C., December 2001, 3611– 3620. 7

Important Links:

Go Back