BLOCK-ORIENTED CONTINUOUS-TIME MODELLING FOR NONLINEAR SYSTEMS UNDER SINUSOIDAL INPUTS

D. Zhai, D.K. Rollins, Sr., and N. Bhandari

References

  1. [1] M.A. Henson & D.E. Seborg, Nonlinear process control (UpperSaddle River, NJ: Prentice Hall PTR, 1997).
  2. [2] N. Bhandari & D.K. Rollins, Continuous-time multi-input,multi-output Wiener modelling method, Industrial and Engi-neering Chemistry Research, 42(22), 2003, 5583–5595.
  3. [3] D.K. Rollins, N. Bhandari, A.M. Bassily, G.M. Colver, &S.-T. Chin, A continuous-time nonlinear dynamic predictivemodelling method for Hammerstein processes, Industrial andEngineering Chemistry Research, 42(4), 2003, 861–872. doi:10.1021/ie020169g
  4. [4] D.K. Rollins, L. Pacheco, & N. Bhandari, A quantitativemeasure to evaluate competing designs for nonlinear dynamicprocess identification, submitted to The Canadian Journal ofChemical Engineering, 84(4), 2006, 459–468.
  5. [5] E. Eskinat, S.H. Johnson, & W.L. Luyben, Use of Hammersteinmodels in identification of nonlinear systems, AIChE Journal,37, 1991, 255–268. doi:10.1002/aic.690370211
  6. [6] H.-T. Su & T.J. McAvoy, Integration of multilayer perceptronnetworks and linear dynamic models: A Hammerstein modelapproach, Industrial and Engineering Chemistry Research, 32,1993, 1927–1936. doi:10.1021/ie00021a017
  7. [7] X. Zhu & D.E. Seborg, Nonlinear predictive control based onHammerstein models, Control Theory and Applications, 11,1994, 564–575.
  8. [8] F.J. Doyle, III, R.K. Pearson, & B.A. Ogunnaike, Identificationand control using volterra models (Great Britain: London,Springer-Verlag, 2002).
  9. [9] H.-P. Huang, M.-W. Lee, & Y.-T. Tang, Identification ofWiener model using relay feedback test, Journal of ChemicalEngineering of Japan, 31, 1998, 604–612. doi:10.1252/jcej.31.604
  10. [10] E. Ikonen & K. Najim, Non-linear process modelling based on aWiener approach, Journal of Systems and Control Engineering,215, 2001, 15–27.
  11. [11] A. Kalafatis, N. Arifin, L. Wang, & W.R. Cluett, A newapproach to the identification of pH process based on theWiener model, Chemical Engineering Science, 50, 1995, 3693–3701. doi:10.1016/0009-2509(95)00214-P
  12. [12] T. Wigren, Recursive prediction error identification using thenonlinear Wiener model, Automatica, 29, 1993, 1011–1025. doi:10.1016/0005-1098(93)90103-Z
  13. [13] W. Greblicki, Continuous-time Hammerstein system identifi-cation, IEEE Transactions on Automatic Control, 45, 2000,1232–1236. doi:10.1109/9.863614
  14. [14] W. Greblicki, Nonparametric identification of Wiener systems,IEEE Transactions on Information Theory, 38, 1992, 1487–1493. doi:10.1109/18.149500
  15. [15] W. Greblicki, Nonparametric approach to Wiener system iden-tification, IEEE Transactions on Circuits Systems I, 44, 1997,538–545. doi:10.1109/81.586027
  16. [16] N. Bhandari & D.K. Rollins, Continuous-time Hammersteinnonlinear modelling applied to distillation, AIChE Journal,50(2), 2003, 530–533. doi:10.1002/aic.10047
  17. [17] D.E. Seborg, T.F. Edgar, & D.A. Mellichamp, Process dynam-ics and control, Second Edition (New York, NY: John Wiley& Sons, 2004).
  18. [18] A. Hajjari & O. Eloutassi, Extracting sine waves from noisymeasurements and estimating their parameters, Proceeding ofthe IASTED International Conference, Intelligent Systems andControl, Santa Barbara, CA, 1999, 341–345.
  19. [19] K.S. Narendra & P.G. Gallman, An iterative method for theidentification of the nonlinear system using the Hammersteinmodel, IEEE Transactions on Automatic Control, 12, 1966,546–550. doi:10.1109/TAC.1966.1098387
  20. [20] D. Zhai, D.K. Rollins, N. Bhandari, & H. Wu, Continuous-timeblock-oriented modelling of periodic signals, Computers andChemical Engineering, 31, 2006, 1–12. doi:10.1016/j.compchemeng.2006.04.003

Important Links:

Go Back