ANN-BASED STATIC SYNCHRONOUS COMPENSATOR FOR IMPROVING TRANSIENT STABILITY PERFORMANCE

V.K. Chandrakar and A.G. Kothari

References

  1. [1] A.A. Edris, R. Aapa, M.H. Baker, L. Bohman, et al., Proposed terms and definitions for flexible ac transmission system (FACTS), IEEE Transactions on Power Delivery, 12(4), 1997, 1848–1853.
  2. [2] L. Gyugyi, Dynamic compensation of ac transmission lines by solid-state synchronous voltage sources, IEEE Transactions on Power Delivery, 19(2), 1994, 904–911. doi:10.1109/61.296273
  3. [3] N.G. Hingorani & L. Gyugyi, Understanding FACTS (Piscataway, NJ: IEEE Press, 2001).
  4. [4] P. Rao, M.L. Crow, & Z. Young, STATCOM control for power system voltage control application, IEEE Transactions on Power Delivery, 15(4), 2000, 1311–1317. doi:10.1109/61.891520
  5. [5] H. Wang & F. Li, Multivariable sampled regulators for the coordinated control of STATCOM ac and dc voltage, IEE Proceedings-C Generation Transmission and Distribution, 147(2), 2000, 93–98. 175 doi:10.1049/ip-gtd:20000008
  6. [6] A.H.M.A. Rahim & M.F. Kandlawala, Robust STATCOM voltage controller design using loop shaping technique, Electric Power System Research, 68, 2004, 61–74. doi:10.1016/S0378-7796(03)00153-6
  7. [7] P.K. Dash, S. Mishra, & G. Panda, A radial basis function neural network controller for UPFC, IEEE Transactions Power System, 15(4), 2000, 1293–1299. doi:10.1109/59.898104
  8. [8] N. Tambey & M.L. Kothari, Damping of power system oscillations with unified power flow controller (UPFC), IEE Proceedings-C Generation Transmission and Distribution, 150(2), 2003, 129–140. doi:10.1049/ip-gtd:20030114
  9. [9] K.R. Padiyar & A.M. Kulkarni, Control design and simulation of unified power flow controller, IEEE Transactions on Power Delivery, 113(4), 1998, 1348–1354. doi:10.1109/61.714507
  10. [10] The Math Works Inc., Simulink users guide (Natick, Mass: The Math Works Press, 1992).
  11. [11] V.K. Chandrakar & A.G. Kothari, Fuzzy logic based static synchronous series compensator (SSSC) for transient stability improvement, 2nd IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Paper No. 245, 5–8 April 2004, Hong Kong. APPENDIX 1 SMIB System Data (in p.u.) G: 250 MVA, 13.8 KV, 60 c/s, Rs = 0.00045, Ls = 0.14, Lmd = 1.51, Lmq = 1.45, Rf = 0.000096, Lfd = 0.61168, H(s) = 0.87882; Exc. System: Ka = 2, Ta = 0.001 s, Ke = 1.0, Te = 0.001 s, Kp = 1; T. line: R1 = 0.01273 omh/km, R0 = 0.3864 omh/km, L1 = 0.9337e-03 H/km, L0 = 4.1264 e-03 H/km, C1 = 12.74e-09 F/km, C0 = 7.751e-09 F/km, Length of line = 450 km, Length of line 1 = 350 km, Length of line 2 = 150 km, Length of line 3 = 450 km; SDT: 6 MVA, 208/345e3 (Vrms), R = 0.002, L = 0.04, Rm = 100; STATCOM: V op = 345 KV, V pq(max) = 0.3 Vop, V pq(min) = −0.3 Vop, Ks = 0.9, Kd = 1.0; POD: Kdd = 144, Tw = 15, T1 = 0.0518e-6s, T2 = 0.0221e-6s; PSS: Kpss = 20, Tw = 15, T3 = T5 = 0.02e-6, T4 = T6 = 0.035e-6s. Multi-Machine Test System Data(in p.u.) Base voltage: 220 KV; MVA(Base): 100 MVA, f = 60 Hz; G1: Similar to SMIB system; G2: 300 MVA, 22 KV, 60 c/s, Rs = 0.00045, Ls = 0.14, Lmd = 1.51, Lmq = 1.45, Rf = 0.000096, Lfd = 0.61168, H(s) = 2.87882; Exc. System-1 and Exc. System-2: Ka = 1, Ta = 0.001 s, Ke = 1.0, Te = 0.001 s, Kp1 = 1, Kp2 = 2.0, SDT: 10 MVA, 208/345e3 (Vrms), f = 60 Hz, R = 0.002, L = 0.04, Rm = 100, STATCOM: V op = 220 KV, V pq(max) = 0.3 Vop, V pq(min) = −0.3 Vop, Ks = 0.95, Kd = 1.0, POD: Kpod = 0.6, Tw = 10, T1 = 0.051e-6s, T2 = 0.022e-6s, PSS: Kpss = 2, Tw = 10, T3 = T5 = 0.02e-6; T4 = T6 = 0.035e-6s, Load 1: 0.15, Load 2: 0.15, Load 3: 0.40 + j0.10; Load 4: 1.0 + j0.05.

Important Links:

Go Back