V.K. Chandrakar and A.G. Kothari
[1] A.A. Edris, R. Aapa, M.H. Baker, L. Bohman, et al., Pro-posed terms and definitions for flexible ac transmission system(FACTS), IEEE Transactions on Power Delivery, 12(4), 1997,1848–1853. [2] L. Gyugyi, Dynamic compensation of ac transmission lines bysolid-state synchronous voltage sources, IEEE Transactions onPower Delivery, 19(2), 1994, 904–911. doi:10.1109/61.296273 [3] N.G. Hingorani & L. Gyugyi, Understanding FACTS (Piscat-away, NJ: IEEE Press, 2001). [4] P. Rao, M.L. Crow, & Z. Young, STATCOM control forpower system voltage control application, IEEE Transactionson Power Delivery, 15(4), 2000, 1311–1317. doi:10.1109/61.891520 [5] H. Wang & F. Li, Multivariable sampled regulators forthe coordinated control of STATCOM ac and dc voltage,IEE Proceedings-C Generation Transmission and Distribution,147(2), 2000, 93–98.175 doi:10.1049/ip-gtd:20000008 [6] A.H.M.A. Rahim & M.F. Kandlawala, Robust STATCOMvoltage controller design using loop shaping technique, ElectricPower System Research, 68, 2004, 61–74. doi:10.1016/S0378-7796(03)00153-6 [7] P.K. Dash, S. Mishra, & G. Panda, A radial basis functionneural network controller for UPFC, IEEE Transactions PowerSystem, 15(4), 2000, 1293–1299. doi:10.1109/59.898104 [8] N. Tambey & M.L. Kothari, Damping of power systemoscillations with unified power flow controller (UPFC), IEEProceedings-C Generation Transmission and Distribution,150(2), 2003, 129–140. doi:10.1049/ip-gtd:20030114 [9] K.R. Padiyar & A.M. Kulkarni, Control design and simulationof unified power flow controller, IEEE Transactions on PowerDelivery, 113(4), 1998, 1348–1354. doi:10.1109/61.714507 [10] The Math Works Inc., Simulink users guide (Natick, Mass:The Math Works Press, 1992). [11] V.K. Chandrakar & A.G. Kothari, Fuzzy logic based staticsynchronous series compensator (SSSC) for transient stabilityimprovement, 2nd IEEE International Conference on ElectricUtility Deregulation, Restructuring and Power Technologies,Paper No. 245, 5–8 April 2004, Hong Kong.APPENDIX 1SMIB System Data (in p.u.)G: 250 MVA, 13.8 KV, 60 c/s, Rs = 0.00045, Ls = 0.14,Lmd = 1.51, Lmq = 1.45, Rf = 0.000096, Lfd = 0.61168,H(s) = 0.87882; Exc. System: Ka = 2, Ta = 0.001 s, Ke =1.0, Te = 0.001 s, Kp = 1; T. line: R1 = 0.01273 omh/km,R0 = 0.3864 omh/km, L1 = 0.9337e-03 H/km, L0 = 4.1264e-03 H/km, C1 = 12.74e-09 F/km, C0 = 7.751e-09 F/km,Length of line = 450 km, Length of line 1 = 350 km, Lengthof line 2 = 150 km, Length of line 3 = 450 km; SDT: 6 MVA,208/345e3 (Vrms), R = 0.002, L = 0.04, Rm = 100; STAT-COM: V op = 345 KV, V pq(max) = 0.3 Vop, V pq(min) =−0.3 Vop, Ks = 0.9, Kd = 1.0; POD: Kdd = 144, Tw = 15,T1 = 0.0518e-6s, T2 = 0.0221e-6s; PSS: Kpss = 20, Tw =15, T3 = T5 = 0.02e-6, T4 = T6 = 0.035e-6s.Multi-Machine Test System Data(in p.u.)Base voltage: 220 KV; MVA(Base): 100 MVA, f = 60 Hz;G1: Similar to SMIB system; G2: 300 MVA, 22 KV, 60 c/s,Rs = 0.00045, Ls = 0.14, Lmd = 1.51, Lmq = 1.45, Rf =0.000096, Lfd = 0.61168, H(s) = 2.87882; Exc. System-1and Exc. System-2: Ka = 1, Ta = 0.001 s, Ke = 1.0, Te =0.001 s, Kp1 = 1, Kp2 = 2.0, SDT: 10 MVA, 208/345e3(Vrms), f = 60 Hz, R = 0.002, L = 0.04, Rm = 100, STAT-COM: V op = 220 KV, V pq(max) = 0.3 Vop, V pq(min) =−0.3 Vop, Ks = 0.95, Kd = 1.0, POD: Kpod = 0.6, Tw =10, T1 = 0.051e-6s, T2 = 0.022e-6s, PSS: Kpss = 2, Tw =10, T3 = T5 = 0.02e-6; T4 = T6 = 0.035e-6s, Load 1: 0.15,Load 2: 0.15, Load 3: 0.40 + j0.10; Load 4: 1.0 + j0.05.
Important Links:
Go Back