INTELLIGENT SENSORLESS CONTROL OF TWO-PHASE LINEAR BRUSHLESS DC MOTOR BASED ON A RECURRENT FUZZY NEURAL NETWORK

J.-L. Kuo and Z.-S. Chang

References

  1. [1] C.W. Green & R.J.A. Paul, Application of dc linear machinesas short-stroke and static actuators, Proc. IEE, 116(4), 1969,599–604.
  2. [2] E.K. Persson, Brushless motor technology, Motor-Con Pro-ceedings, 1983, 129–140.
  3. [3] B.L. Triplett, DC linear motors, Motor-Con Proceedings, 1986,104–108.167
  4. [4] J. Omerod, Permanent magnet materials, IEE Colloquium onNew Permanent Magnet Materials and their Applications, IEE,London, 9 Jan 1989, 1-5–5-5.
  5. [5] F.J. Anayi & A. Basak, Brushless NdFeB permanent magnetdc linear motors, Proc. 4th Int. Conf. on Electrical Machinesand Drives, IEE, London, 1989, 71–75.
  6. [6] C.T. Lin & C.S.G. Lee, Neural fuzzy systems: A neuro-fuzzy synergism to intelligent systems (Englewood Cliffs, NJ:Prentice-Hall, 1996).
  7. [7] K. Hornik, M. Stinchcombe, & H. White, Multilayer feedfor-ward networks are universal approximators, Neural Networks,2, 1989, 359–366. doi:10.1016/0893-6080(89)90020-8
  8. [8] L.X. Wang & J.M. Mendel, Fuzzy basis functions, universalapproximation, and orthogonal least squares learning, IEEETrans. on Neural Networks, 3(5), 1992, 807–814.
  9. [9] Y.G. Leu, T.T. Lee, & W.Y. Wang, Observer-based adaptivefuzzy-neural control for unknown nonlinear dynamic systems,IEEE Trans. on Systems, Man and Cybernetics, 29(5), 1999,583–591. doi:10.1109/3477.790441
  10. [10] C.J. Lin, A GA-based neural fuzzy system for temperaturecontrol, Fuzzy Sets and Systems, 143, 2004, 311–333. doi:10.1016/S0165-0114(03)00126-X
  11. [11] C.M. Lin & C.F. Hsu, Supervisory recurrent fuzzy neuralnetwork control of wing rock for slender delta wings, IEEETrans. on Fuzzy Systems, 12(5), 2004, 733–742. doi:10.1109/TFUZZ.2004.834803
  12. [12] C.H. Lee & C.C. Teng, Identification and control of dynamicsystems using recurrent fuzzy neural networks, IEEE Trans.on Fuzzy Systems, 8(4), 2000, 349–366. doi:10.1109/91.868943
  13. [13] P.A. Mastorocostas & J.B. Theocharis, A recurrent fuzzy-neural model for dynamic system identification, IEEE Trans.on Systems, Man, and Cybernetics, Pt. B: Cybernetics, 32(2),2002, 176–190. doi:10.1109/3477.990874
  14. [14] M. Han, J. Xi, S. Xu, & F.L. Yin, Prediction of chaotic timeseries based on the recurrent predictor neural network, IEEETrans. on Signal Processing, 52(12), 2004, 3049–3416. doi:10.1109/TSP.2004.837418
  15. [15] T. Takagi & M. Sugeno, Fuzzy identification of systems and itsapplications to modeling and control, IEEE Trans. on Systems,Man, and Cybernetics, 15(1), 1985, 116–132.
  16. [16] F.J. Lin, R.J. Wai, & H.P. Chen, A PM synchronous servomotor drive with an on-line trained fuzzy neural networkcontroller, IEEE Trans. on Energy Conversion, 13(4), 1998,319–325. doi:10.1109/60.736317
  17. [17] F.J. Lin, R.J. Wai, & C.M. Hong, Hybrid supervisory controlusing recurrent fuzzy neural network for tracking periodicinputs, IEEE Trans. on Neural Networks, 12(1), 2001, 68–90. doi:10.1109/72.896797

Important Links:

Go Back