A NEURO-FUZZY APPROACH TO SIMULATE THE USER MODE CHOICE BEHAVIOUR IN A TRAVEL DECISION FRAMEWORK

M.N. Postorino and M. Versaci

References

  1. [1] M. Ben Akiva & S. Lerman, Discrete choice analysis (Cam-bridge, MA: MIT Press, 1985).
  2. [2] E. Cascetta, Transportation systems engineering: Theoryand methods (Dordrecht, The Netherlands: Kluwer AcademicPress, 2001).
  3. [3] K. Train, Discrete choice methods with simulation (Cambridge:Cambridge University Press, 2002).
  4. [4] J.J. Louviere, D.A. Hensher, & J.D. Swait, Stated choicemethods: Analysis and application (Cambridge: CambridgeUniversity Press, 2000).
  5. [5] T.A. Domencich & D. Mc Fadden, Urban travel demand: Abehavioural analysis (New York: American Elsevier, 1975).
  6. [6] J. de D. Ortuzar, Nested-logit models for mixed-mode travelin urban corridors, Transportation Research, 17A(4), 1983,283–299.
  7. [7] C.F. Daganzo, Multinominal probit: The theory and its ap-plication to demand forecasting (New York: Academic Press,1979).
  8. [8] M.J.I. Gaudry, A Dogit model of travel mode choice in Mon-treal, Publication No. 104, Centre de Recherche sue les Trans-ports, Universit`e de Montreal, 1978.
  9. [9] M.J.I. Gaudry & M.G. Dagenais, The Dogit model, Trans-portation Research, 13B, 1979, 105–111.
  10. [10] G.E.R. Box & D.R. Cox, An analysis of transformation, Journalof Royal Statistical Society, 26 Series B, 1964, 211–252.
  11. [11] M.J.I. Gaudry, The inverse power transformation Logit andDogit mode choice models, Transportation Research, 15B,1981, 97–103.
  12. [12] M.N. Postorino, A comparative analysis of different specifi-cations of modal choice models in an urban areas, EuropeanJournal of Operational Research, 71, 1993, 288–302. doi:10.1016/0377-2217(93)90055-R
  13. [13] P. Vovsha, The cross-nested logit model: Application to modechoice in the Tel-Aviv metropolitan area, Transportation Re-search Record, 1607, 1997, 6–15. doi:10.3141/1607-02
  14. [14] C.H. Wen & F.S. Koppelman, The generalized nested logitmodel, Transportation Research, 35B(7), 2001, 627–641.
  15. [15] C.R. Bhat, A heteroscedastic extreme value model of intercitytravel mode choice, Transportation Research, 29B(6), 1997,471–483.
  16. [16] C.R. Bhat, Covariance heterogeneity in nested logit mod-els: Econometric structure and application to intercity travel,Transportation Research, 31B(1), 1997, 11–21.
  17. [17] A.W. Sadek, G. Spring, & B.L. Smith, Towards more effec-tive transportation applications of computational intelligenceparadigms, Transportation Research Record, 1836, 2003, 57–63. doi:10.3141/1836-08
  18. [18] O. Pribyl & K.G. Goulias, Application of adaptive neuro-fuzzyinference system to analysis of travel behaviour, TransportationResearch Record, 1854, 2003, 180–188. doi:10.3141/1854-20
  19. [19] T. Sayed, A. Tavakolie, & A. Razavi, Comparison of adaptivenetwork based fuzzy inference systems and B-spline neurofuzzy mode choice models, Journal of Computing in CivilEngineering, 17 (2), 2003, 123–130. doi:10.1061/(ASCE)0887-3801(2003)17:2(123)
  20. [20] M. Higashi & G.J. Klir, On the notion of distance representinginformation closeness: Possibility and probability distributions,International Journal of General Systems, 9 (2), 1983, 103–115. doi:10.1080/03081078308960805
  21. [21] G.E. Cantarella & V. Fedele, Fuzzy vs. random utility models:An application to mode choice behaviour analysis, Proc. Eu-ropean Transportation Conf. 2003, Strasbourg, France, 2003.
  22. [22] V. Henn, Fuzzy route choice model for traffic assignment,Fuzzy Sets and Systems, 116 (1), 2000, 77–101. doi:10.1016/S0165-0114(99)00039-1
  23. [23] H.X. Liu, X. Ban, B. Ran, & P. Mirchandani, Formulationand solution algorithm for fuzzy dynamic traffic assignmentmodel, Transportation Research Record, 1854, 2003, 114–123. doi:10.3141/1854-13
  24. [24] L. Zadeh, Fuzzy sets, Information and Control, 8 (3), 1965,338–353. doi:10.1016/S0019-9958(65)90241-X
  25. [25] B. Kosko, Fuzzy engineering (Upper Saddle River, New Jersey:Prentice Hall Inc., Simon & Schuster/A Viacom Company,1996).
  26. [26] T. Takagi & M. Sugeno, Industrial application of fuzzy control(Tokyo, Japan: Elsevier Science Pub. Co., Elsevier Science,1985).
  27. [27] Y. Lin, G.A. Cunningham, S.V. Coggenshall, & R.D. Jones,Non linear system input structure identification: Two stagefuzzy curves and surface, IEEE Transaction on Systems, Man,and Cybernetics, 28 (5), 1998, 678–684. doi:10.1109/3468.709615
  28. [28] J.R. Lang, ANFIS: Adaptive network-based fuzzy inferencesystem, IEEE Transaction on Systems, Man, and Cybernetics,23 (3), 1993, 665–685. doi:10.1109/21.256541

Important Links:

Go Back