REDUCTION OF POWER SYSTEM MODEL USING BALANCED REALIZATION, ROUTH AND PADE APPROXIMATION METHODS

N. Singh, R. Prasad, and H.O. Gupta

References

  1. [1] R. Genesio & M. Milanese, A note on the derivation and useof reduced order models, IEEE Transactions on AutomaticControl, AC-21 (1), 1976, 118–122. doi:10.1109/TAC.1976.1101127
  2. [2] D. Bonvin & D.A. Mellichamp, A unified derivation and criticalreview of modal approaches to model reduction, InternationalJournal of Control, 35 (5), 1982, 829–848. doi:10.1080/00207178208922657
  3. [3] A. Bultheel & M. Van Barel, Pade techniques for modelreduction in linear system theory, Journal of ComputationalApplied Math, 14, 1986, 401–438. doi:10.1016/0377-0427(86)90076-2
  4. [4] S. Elangovan & A. Kuppurajulu, Suboptimal control of powersystems using simplified models, IEEE Transactions on PAS,PAS-91(3), 1972, 911–915. doi:10.1109/TPAS.1972.293439
  5. [5] D.P. Papadopoulos & A.K. Boglou, Reduced order modellingof linear MIMO systems with the Pade approximation method,International Journal of System Science, 21 (4), 1990, 693–710. doi:10.1080/00207729008910402
  6. [6] G. Troullinos & J. Dorsey, Application of balanced realizationsto power system equivalents, IEEE Transactions on AutomaticControl, AC-30 (4), April 1985, 414–416. doi:10.1109/TAC.1985.1103960
  7. [7] B.C. Moore, Principal component analysis in linear systems:controllability, observability and model reduction, IEEE Trans-actions on Automatic Control, AC-26 (1), 1981, 17–31.
  8. [8] L. Pernabo & L.M. Silverman, Model reduction via balancedstate space representations, IEEE Transactions on AutomaticControl, AC-27 (2), 1982, 382–387. doi:10.1109/TAC.1982.1102945
  9. [9] R. Samar, I. Postlethwaite, & G. Da-Wei, Model reductionwith balanced realizations, International Journal of Control,62 (1), 1995, 33–64. doi:10.1080/00207179508921533
  10. [10] V. Krishnamurthy & V. Seshadri, Model reduction using Routhstability criterion, IEEE Transactions on Automatic Control,AC-23 (4), 1978, 729–731. doi:10.1109/TAC.1978.1101805
  11. [11] Y. Shamash, Stable reduced order models using Pade type ap-proximations system, IEEE Transactions on Automatic Con-trol, AC-19 (5), 1974, 615–616. doi:10.1109/TAC.1974.1100661
  12. [12] Rajendra Prasad, Pade type model order reduction for multi-variable systems using routh approximation, Computers andElectrical Engineering, 26, 2000, 445–459. doi:10.1016/S0045-7906(00)00002-1
  13. [13] N.K. Sinha, Control systems (London UK: Wiley EasternLimited, 1990).
  14. [14] J. Pal, Improved Pade approximations using stability equationmethod, Electronic Letters, 19 (11), 1980, 426–427. doi:10.1049/el:19830292
  15. [15] P.M. Anderson & A.A. Fouad, Power system control andstability (USA: IEEE Press Power Engineering Series, WileyInterscience, 2003).
  16. [16] P. Kundur, Power system stability and control (The EPRIPower System Engineering Series, New York: McGraw-Hill,1994).
  17. [17] M.F. Hutton & B. Friedland, Routh approximations for reduc-ing order of linear time invariant systems, IEEE Transactionson Automatic Control, AC-20(3), 1975, 329–337. doi:10.1109/TAC.1975.1100953

Important Links:

Go Back