FAULT CLASSIFICATION FOR A CLASS OF TIME-VARYING SYSTEMS BY USING OVERLAPPED ART2A NETWORKS

H. Ben´tez-P´rez, J. Solano-Gonz´lez, F. Cardenas-Flores, and D.F. Garc´a-Nocetti ı e a ´ ı

References

  1. [1] R. Rengaswamy, D. Mylaraswamy, K.E. Arzen, & V. Venkata-subramanian, A comparison of model-based and neural network based diagnostic methods, Engineering Application of Artificial Intelligence, 14, 2001, 805–818. doi:10.1016/S0952-1976(02)00010-6
  2. [2] F. Uppal, R. Patton, & V. Palade, Neuro-fuzzy based fault diagnosis applied to an electro-pneumatic valve, 15th Triennial World Congress IFAC CONTROL, Barcelona, Spain, 2002.
  3. [3] N. Taillefond & O. Wolkenhauer, Fuzzy clustering and classification for automated leak detection systems, 15th Triennial World Congress IFAC CONTROL, Barcelona, Spain, 2002.
  4. [4] S. J¨ams¨a-Jounela, M. Vermasvuori, P. End´en, & S. Haavisto, A process monitoring system based on the Kohonen self-organizing maps’, Control Engineering Practice, 11, 2003, 83–92. doi:10.1016/S0967-0661(02)00141-7
  5. [5] O. Nelles, Non-linear systems identification (Springer-Verlag, 2001).
  6. [6] V. Venkatasubramanian, R. Rengaswamy, S. Kavuri, & K.Yin, A review of process fault detection and diagnosis – Part I: Quantitative model-based methods, Computers and Chemical Engineering, 27, 2003, 293–311. doi:10.1016/S0098-1354(02)00160-6
  7. [7] J.C. Aude, Y. Diaz-Lazcoz, J. Codani, & J. Risler, Applications of the pyramidal clustering method to biological objects, Computers and Chemistry, 23, 1999, 303–315. doi:10.1016/S0097-8485(99)00006-6
  8. [8] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, & D. Rosen, Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps, IEEE Transactions on Neural Networks, 3 (5), 1992, 698–713. doi:10.1109/72.159059
  9. [9] R. Patton, P. Frank, & R. Clark, Issues of fault diagnosis for dynamic systems (UK: Springer Verlag, 2000).
  10. [10] B.S. Yang, T. Han, & J.L. An, ART-KOHONEN neuralnetwork for fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, 3 (18), 2004, 645–657. doi:10.1016/S0888-3270(03)00073-6
  11. [11] J.R. Whiteley, J.F. Davis, A. Mehrotra et al., Observations and problems applying ART2 for dynamic sensor pattern interpretation; IEEE Transactions on Systems Man and Cybernetics Part A – Systems and Humans, 4 (26), 1996, 423-437.
  12. [12] H.B. Aradhye, B.R. Bakshi, J.F. Davis et al., Clustering in wavelet domain: A multiresolution ART network for anomaly detection; Aiche Journal, 10 (50), 2004, 2455–2466.
  13. [13] I.S. Lee, J.T. Kim, & J.W. Lee, Model-based fault detection and isolation method using ART2 neural network, International Journal of Intelligent Systems, 10 (18), 2003, 1087–1100. doi:10.1002/int.10134
  14. [14] Y. Yamashita, H. Komori, & M. Suzuki, Running multiple neural networks for process trend interpretation, Journal of Chemical Engineering of Japan, 4 (32), 1999, 552–556. doi:10.1252/jcej.32.552
  15. [15] H. Ben´ıtez-P´erez & F. Garc´ıa-Nocetti, Reconfigurable distributed control (Springer Verlag, 2005). 71

Important Links:

Go Back