J. Poland and K. Knödler
[1] M.D. Buhmann, Radial basis functions (Cambridge Monographs on Applied and Computational Mathematics, 2006). [2] I.J. Schoenberg, Positive definite functions on spheres. Duke Mathematical Journal, 9, 1942, 96–108. doi:10.1215/S0012-7094-42-00908-6 [3] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree, Advances in Computational Mathematics, 4, 1995, 177–188. doi:10.1007/BF02123482 [4] J. Poland, K. Knödler, A. Zell, T. Fleischhauer, A. Mitterer, & S. Ullmann, Model-based online optimization of modern internal combustion engines, Part 1: Active learning, MTZ Worldwide (Motortechnische Zeitschrift), 64 (5), 2003, 31–33 [German edition, pp. 432–437]. [5] K. Knödler, J. Poland, A. Zell, T. Fleischhauer, A. Mitterer & S. Ullmann, Model-based online optimization of modern internal combustion engines, Part 2: Limits of the feasible search space, MTZ Worldwide (Motortechnische Zeitschrift), 64 (6), 2003, 30–32 [German edition, pp. 520–526]. [6] L.C.W. Dixon & G.P. Szego, The optimization problem: An introduction, in L.C.W. Dixon & G.P. Szego (Eds.), Towards global optimization II (North Holland, 1978). [7] D.A. Cohn, Z. Ghahramani, & M.I. Jordan, Active learning with statistical models. Journal of Artificial Intelligence Research, 4, 1994, 129–145. [8] Y. Freund, H. Sebastian Seung, Eli Shamir, & Naftali Tishby, Selective sampling using the query by committee algorithm, Machine Learning, 28, 1997, 133. doi:10.1023/A:1007330508534 [9] J. Poland & A. Zell, Different criteria for active learning in neural networks: A comparative study. Proc. 10th European Symp. on Artificial Neural Networks, Brugge, Belgium, 2002, 119–124. [10] R.S. Anderssen, R.P. Brent, D.J. Daley, & A.P. Moran, Concerning 10 · · ·10 x 2 1 + · · · +x2 kdx1 · · · dxk and a taylor series method, SIAM Journal on Applied Mathematics, 30, 1976, 22–30. doi:10.1137/0130003
Important Links:
Go Back