OPTIMAL FUSION REDUCED-ORDER KALMAN ESTIMATORS FOR DISCRETE-TIME STOCHASTIC SINGULAR SYSTEMS

S.L. Sun, Y.L. Shen, and J. Ma

References

  1. [1] L. Dai, State estimation scheme in singular systems, Preprints of the 10th IFAC World Congress. Munich, Germany, 9, 1987, 211–215.
  2. [2] M. Darouach, M. Zasadzinski, & M. Mehdi, State estimation for stochastic singular linear systems, International Journal of Systems Science, 24 (3), 1993, 345–354. doi:10.1080/00207729308949493
  3. [3] R. Nikoukhah, A.S. Willsky, & B.C. Levy, Kalman filtering and Riccati equation for descriptor systems. IEEE Transaction on Automatic Control, 37 (9), 1992, 1325–1340. doi:10.1109/9.159570
  4. [4] Y. Bar-Shalom, On the track-to-track correlation problem, IEEE Transaction on Automatic Control, 26 (2), 1981, 571–572. doi:10.1109/TAC.1981.1102635
  5. [5] H.R. Hashemipour, S. Roy, & A.J. Laub, Decentralized structures for parallel Kalman filtering, IEEE Transaction on Automatic Control, 33 (1), 1988, 88–93. doi:10.1109/9.364
  6. [6] N.A. Carlson, Federated square root filter for decentralized parallel processes, IEEE Transaction on Aerospace and Electronic Systems, 26 (3), 1990, 517–525. doi:10.1109/7.106130
  7. [7] S. Roy & H.R. Hashmipour, Decentralized linear estimation in correlated measurement noise, IEEE Transaction on Aerospace and Electronic Systems, 27 (6), 1991, 939–941. doi:10.1109/7.104265
  8. [8] R.K. Saha, An efficient algorithm for multisensor track fusion, IEEE Transaction on Aerospace and Electronic Systems, 34 (1), 1998, 200–210. doi:10.1109/7.640278
  9. [9] K.H. Kim, Development of track to track fusion algorithm. Proceeding of the American Control Conference, Maryland, 1994, 1037–1041.
  10. [10] H. Chen, T. Kirubarajan, & Y. Bar-Shalom. Performance limits of track-to-track fusion vs. centralized estimation: theory and application, IEEE Transaction on Aerospace and Electronic Systems, 39 (2), 2003, 386–398. doi:10.1109/TAES.2003.1207252
  11. [11] X.R. Li, Y.M. Zhu, J. Wang, & C.Z. Han, Optimal linear estimation fusion – part I: unified fusion rules, IEEE Transactions on Information Theory, 49 (9), 2003, 2192–2208. doi:10.1109/TIT.2003.815774
  12. [12] S.L. Sun, Multi-sensor optimal information fusion Kalman filter with application, Aerospace Science and Technology, 8 (1), 2004, 57–62. doi:10.1016/j.ast.2003.08.003
  13. [13] S.L. Sun & Z.L. Deng, Multi-sensor optimal information fusion Kalman filter, Automatica, 40(6), 2004, 1017–1023. doi:10.1016/j.automatica.2004.01.014
  14. [14] S.L. Sun, Distributed optimal component fusion weighted by scalars for fixed-Lag Kalman smoother, Automatica, 41 (12), 2005, 2153–2159. doi:10.1016/j.automatica.2005.06.014
  15. [15] S.L. Sun & C.P. Zhang, Optimal information fusion distributed smoother for discrete multichannel ARMA signals, IEE Proceedings-Vision, Image, and Signal Processing, 152 (5), 2005, 583–589.
  16. [16] S.L. Sun & Z.L. Deng, Distributed optimal fusion steady-state Kalman filter for systems with colored measurement noises. International Journal of Systems Science, 36 (3), 2005, 113–118. doi:10.1080/00207720412331323280
  17. [17] V.L. Syrmos & F.L. Lewis, Robust eigenvalue assignment for generalized systems, Automatica, 28 (6), 1992, 1223–1228. doi:10.1016/0005-1098(92)90064-M
  18. [18] B.D.O. Anderson & J.B. Moore, Optimal filtering, Englewood Cliffs, NJ )Prentice-Hall, 1979).

Important Links:

Go Back