DESIGN FOR HIGH DYNAMIC PERFORMANCE ROBOT BASED ON DYNAMICALLY COUPLED DRIVING AND JOINT STOPS

C. Xu, A. Ming, K. Mak, and M. Shimojo

References

  1. [1] S.Y. Nof, Handbook of industrial robotics, Second Edition (New York: John Wiley & Sons, 1999), 60–61.
  2. [2] C.M. Gosselin & J. Angeles, The optimum kinematic design of a planar three-degree-of-freedom parallel manipulators, Journal of Mechanisms, Transmissions, and Automation in Design, 110 (1), 1988, 35–41.
  3. [3] J. Angeles & C.S. Lopez-Cajun, Kinematic isotropy and the conditioning index of serial type robotic manipulators, International Journal of Robotics Research, 11 (6), 1992, 560–571. doi:10.1177/027836499201100605
  4. [4] K.E. Zanganeh & J. Angeles, Kinematic isotropy and the optimum design of parallel manipulators, International Journal of Robotics Research, 16 (2), 1997, 185–197. doi:10.1177/027836499701600205
  5. [5] A. Fattah & A.M. Hasan Ghasemi, Isotropic design of spatial parallel manipulators, International Journal of Robotics Research, 21 (9), 2002, 811–824. doi:10.1177/0278364902021009842
  6. [6] C.A. Klein & T.A. Miklos, Spatial robotic isotropy, International Journal of Robotics Research, 10 (4), 1991, 426–437. doi:10.1177/027836499101000410
  7. [7] S.H. Lee, B.-J. Yi, & Y.K. Kwak, Optimal kinematic design of an anthropomorphic robot module with redundant actuators, International Journal of Mechatronics, 7 (5), 1997, 443–464. doi:10.1016/S0957-4158(97)00011-1
  8. [8] A. Sharon, N. Hogan, & D.E. Hardt, The macro/micro manipulator: an improved architecture for robot control, Journal of Robotics and Computer-Integrated Manufacturing, 10 (3), 1993, 209–222. doi:10.1016/0736-5845(93)90056-P
  9. [9] K. Koser, A slider crank mechanism based robot arm performance and dynamic analysis, Journal of Mechanism and Machine Theory, 39 (2), 2004, 169–182. doi:10.1016/S0094-114X(03)00112-5
  10. [10] S. Grahn & G. Johansson, Spring-assisted gantry robots versus conventional gantry robots: spring constant optimization and work minimization, Journal of Industrial Robot, 29 (1), 2002, 53–60. doi:10.1108/01439910110410060
  11. [11] J.H. Oh, D.G. Lee, & H.S. Kim, Composite robot end effector for manipulating large LCD glass panels, Journal of Composite Structure, 47 (1), 1999, 497–506. doi:10.1016/S0263-8223(00)00013-1
  12. [12] L.P. Chao, Optimal-design and sensitivity analysis of flexible robotic manipulators fabricated from advanced composite-materials, Journal of Thermoplastic Composite Materials, 8 (4), 1995, 346–364.
  13. [13] J.H. Park & H. Asada, Concurrent design optimization of mechanical structure and control for high-speed robots, ASME Journal of Dynamic Systems, Measurement, and Control, 116 (3), 1994, 344–356. doi:10.1115/1.2899229
  14. [14] A.C. Pil & H. Asada, Integrated structure/control design of mechatronic systems using a recursive experimental optimization method, IEEE/ASME Transactions on Mechatronics, 1 (3), 1996, 191–203. doi:10.1109/3516.537042
  15. [15] Y. Zhu, J.H. Qiu, & J. Tani, Simultaneous optimization of a flexible robot arm, JSME International Journal Series C – Mechanical Systems, Machine Elements and Manufacturing, 43 (1), 2000, 32–37.
  16. [16] Z.M. Bi & W.J. Zhang, Concurrent optimal design of modular robotic configuration, Journal of Robotic System, 18 (9), 2001, 77–87. doi:10.1002/1097-4563(200102)18:2<77::AID-ROB1007>3.0.CO;2-A
  17. [17] I.M. Fonseca, P.M. Bainum, & P.T.M. Lourencao, Structural and control optimization of a space structure subject to the gravity-gradient torque, Acta Astronautica, 51 (10), 2002, 673–681. doi:10.1016/S0094-5765(02)00024-3
  18. [18] K. Miller, Optimal design and modeling of spatial parallel manipulators, International Journal of Robotics Research, 23 (2), 2004, 127–140. doi:10.1177/0278364904041322
  19. [19] W. Schiehlen, Energy-optimal design of walking machines, Journal of Multibody System Dynamics, 13 (1), 2005, 129–141. doi:10.1007/s11044-005-4068-4
  20. [20] J. Lenarcic, Improvement of velocity and force capability of robot manipulators, Journal of Laboratory Robotics and Automation, 6 (6), 1994, 293–299.
  21. [21] C.-Y.E. Wang, W.K. Timoszyk, & J.E. Brown, Payload maximization for open chained manipulators: finding weightlifting motions for a Puma760 robot, IEEE Transactions on Robotics and Automation, 17 (2), 2001, 218–224. doi:10.1109/70.928569
  22. [22] A. Ming, T. Mita, S. Dhlamini, & M. Kajitani, Motion control skill in human hyper dynamic motions – An investigation on the golf swing by simulation, Proc. IEEE Int. Symp. on Computational Intelligence in Robotics and Automation, Alberta, Canada, 2001, 47–52.
  23. [23] A. Ming, M. Kajitani, & M. Shimojo, A proposal for utilizing structural joint stop in a manipulator, Proc. IEEE Int. Conf. on Robotics and Automation, Washington, WA, 2002, 3649–3654. doi:10.1109/ROBOT.2002.1014276
  24. [24] A. Ming, N. Harada, M. Shimojo, & M. Kajitani, Development of a hyper dynamic manipulator utilizing joint stops, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, 2003, 2084–2089.
  25. [25] R.M. Murray, Z. Li, & S. Shankar Sastry, A mathematical introduction to robotic motion (Florida: CRC Press, 1994).
  26. [26] R.P.C. Paul & B. Shimano, Compliance and control, Proc. Joint Automatic Control Conference, Purdue University, Lafayette, IN, 1976, 694–699.
  27. [27] H. Hanafusa & H. Asada, Stable prehension by a robot hand with elastic fingers, Proc. 7th Int. Symp. on Industrial Robots, Tokyo, Japan, 1977, 361–368.
  28. [28] J.K. Salisbury, Active stiffness control of a manipulator in cartesian coordinates, Proc. 19th IEEE Conf. on Decision and Control, Albuquerque, NM, 1980, 95–100.
  29. [29] N. Hogan, Impedance control: An approach to manipulation, ASME Journal of Dynamics Systems, Measurement and Control, 107 (1), 1985, 1–24.
  30. [30] K.F. Laurin-Kovitz, J.E. Colgate, & S.D.R. Carnes, Design of components for programmable passive impedance, Proc. IEEE Int. Conf. Robotics and Automation, Sacramento, CA, 1991, 1476–1481.
  31. [31] K. Hyoudo & M. Wada, A study on tendon controlled wrist mechanism with nonlinear spring tensioner, Journal of the Robotics Society of Japan, 11 (8), 1993, 1244–1251.
  32. [32] T. Morita, N. Tomita, T. Ueda, & S. Sugano, development of force-controlled robot arm using mechanical impedance adjuster, Journal of the Robotics Society of Japan, 16 (7), 1998, 1001–1006.
  33. [33] T. Yamashita, K. Takeuchi, Y. Okuno, & S. Sagara, Control of stiffness and torque by antagonistically driven joint: experimental study using air actuated mechanism, Journal of the Robotics Society of Japan, 13 (5), 1995, 666–673.
  34. [34] Y. Hayakawa, S. Kawamura, T. Goto, & K. Nagai, Development of a revolving drive mechanism for a robot manipulator by using pneumatic bellows actuators with force sensing ability, Journal of the Robotics Society of Japan, 14 (2), 1996, 271–278.
  35. [35] W. Katusrashima, H. Kikuchi, K. Abe, & M. Uchiyama, Design and development of a robot arm with flexible joints, Proceedings of the RSJ Annual Conference, 1998, 963–964.
  36. [36] I. Mizuuchi, T. Matsuki, S. Kagami, M. Inaba, & H. Inoue, An approach to a humanoid that has a variable flexible torso, Proceedings of the RSJ Annual Conference, 1998, 825–826.
  37. [37] M. Okada, Y. Nakamura, & S. Ban, Design of programmable compliance for humanoid shoulder, Experimental Robotics, VII, 2001, 31–40.
  38. [38] R.H. Bartels, J.C. Beatty, & B.A. Barsky, An introduction to splines for use in computer graphics and geometric modeling (San Mateo, CA: Morgan Kaufmann, 1987).
  39. [39] C. Xu, A. Ming, T. Marumaya, & M. Shimojo, Motion generation for hyper dynamic manipulation, International Journal of Mechatronics, 17 (8), 2007, 405–416. doi:10.1016/j.mechatronics.2007.05.002

Important Links:

Go Back